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Distributed Resilient Submodular Action Selection
in Adversarial Environments

Jun Liu1, Lifeng Zhou2, Pratap Tokekar3, and Ryan K. Williams1

Abstract—In this letter, we consider a distributed submodular
maximization problem for multi-robot systems when attacked
by adversaries. One of the major challenges for multi-robot
systems is to increase resilience against failures or attacks.
This is particularly important for distributed systems under
attack as there is no central point of command that can detect,
mitigate, and recover from attacks. Instead, a distributed multi-
robot system must coordinate effectively to overcome adversarial
attacks. In this work, our distributed submodular action selection
problem models a broad set of scenarios where each robot in a
multi-robot system has multiple action selections that may fulfill
a global objective, such as exploration or target tracking. To
increase resilience in this context, we propose a fully distributed
algorithm to guide each robot’s action selection when the system
is attacked. The proposed algorithm guarantees performance
in a worst-case scenario where up to a portion of the robots
malfunction due to attacks. Importantly, the proposed algorithm
is also consistent, as it is shown to converge to the same solution as
a centralized method. Finally, a distributed resilient multi-robot
exploration problem is presented to confirm the performance of
the proposed algorithm.

Index Terms—Distributed robot systems, planning, scheduling
and coordination, multi-robot systems, resilient, submodular.

I. INTRODUCTION

RESILIENCE is a crucial property for multi-robot sys-
tems. Consider, for example, a multi-robot exploration

application where each robot selects exploration actions from
an action candidate set, e.g., a motion primitive set. In
adversarial environments, sensors may fail or get attacked,
and depending on the contributions of the attacked sensors,
the exploration performance may be seriously affected. This
problem is more challenging in distributed multi-robot systems
since each robot can only share its local information with
neighbors to maximize the system reward subject to adver-
sarial influences.
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Fig. 1. In a multi-robot environmental exploration application, the robots
are mounted with downward-facing cameras to explore the environment. An
attacker blocks one of the robots’ cameras (red).

This letter focuses on a scenario where the robots in a
distributed multi-robot system need to work together to guard
the system against worst-case attacks. By worst-case attacks,
we refer to the case where the system may have up to K
sensor failures. Robots operating in adversarial scenarios may
get cyber-attacked or face failures, resulting in a temporary
withdrawal of robots from the task (e.g., because of temporary
deactivation of their sensors, blockage of their field of view).
For example, in Fig. 1, each robot in the system is equipped
with a downward-facing camera to explore an environment
with different weights in different areas, where there is one
robot whose sensor is blocked by an attacker. It is worth
mentioning that robot failure and sensor failure are different.
If a sensor is attacked, the corresponding robot may not know
this attack and still perform other tasks/communications as
planned.

Related Work: The resilience of multi-robot systems has
received attention recently (see a comprehensive survey in
[1]). In [2], the authors presented a resilient formation control
algorithm that steers a team of mobile robots to achieve desired
flocking even though some team members are non-cooperative
(or adversarial) and broadcast deceptive signals. Deceptive
or spoofing attacks were also considered in the wireless
communication [3] and the target state estimation [4] of multi-
robot teams. Another type of attack, called masquerade attack,
was studied in a multi-agent path-finding problem [5]. In
this letter, we instead focus on defending multi-robot systems
against the denial-of-service (DoS) attacks that can compro-
mise the sensors’ functionality [6]. For example, a polynomial-
time resilient algorithm to counter adversarial denial-of-service
(DoS) attacks or failures in a submodular maximization prob-
lem was proposed in [7]. Meanwhile, resilient coordination
algorithms have been designed to cope with adversarial attacks
in multi-robot target tracking [8], the orienteering problem [9],
etc. In [10], the authors proposed to solve the centralized
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resilient target tracking problem [8] in a distributed way.
This method partitions robots into subgroups/cliques, and then
the subgroups perform a centralized algorithm in parallel
to counter the worst-case attacks. Thus, even if there exist
communications between subgroups, these available commu-
nications are not utilized because each subgroup operates
independently. Therefore, the proposed algorithm in [10] has
a worse approximation bound than its centralized counterpart.

The action selection problem falls into the combinatorial
robotics application domain. The authors in [11] proposed a
consensus-based method for the task allocation problem. In
[12], the authors used matroids to model the task allocation
constraints and provided a distributed approach with 1/2
optimality ratio. In [13], the authors extended the use of
matroids to abstract task allocation constraints modeling and
demonstrated the suboptimality through a sequential auction
method in a decentralized scenario. In [14], [15], the authors
applied submodular and matroids techniques in a multi-robot
intermittent environmental monitoring problem, where the
deployment actions are selected based on the environmental
process. In [16], the authors utilized the submodularity of a
mutual information function to prove the performance of a dis-
tributed multi-robot exploration method, while synchronization
is needed. The authors in [17] considered two coupled action
selection problems in an environmental monitoring applica-
tion, where the selected tasks have an impact on the monitored
environmental process behavior. In [18], the authors studied
how the information from other robots impact the decisions
of a multi-robot system in distributed settings. Similarly, the
submodular properties were also utilized in the consensus
problem [19], the leader selection problem [20], etc. However,
resilience is not the primary consideration, especially when the
system is under worst-case attacks. In this letter, we propose
a fully distributed resilient algorithm that requires no central
point of command to solve the action selection problem in
adversarial environments. The proposed distributed resilient
method can perform as well as the corresponding centralized
algorithm when subject to worst-case adversarial attacks.

Contributions: The contributions are as follows:

1) We formulate a fully distributed resilient submodular
action selection problem.

2) We demonstrate how to solve the problem in a fully
distributed manner where each robot computes its action
only and shares the decision with its neighbors to achieve
convergence with performance guarantees.

3) We prove and evaluate the proposed algorithm’s perfor-
mance is consistent, as it is shown to converge to the
same solution as a centralized method.

Organization: In Section II, we introduce preliminaries
followed by the problem formulation. In Section III, we use
two subsections to demonstrate the two phases of the proposed
algorithm. Then, the performance analysis of the proposed
algorithm is shown in Section IV. In Section V, numerical
evaluation is performed in a multi-robot exploration problem.
We then close the letter in Section VI.

Fig. 2. Each robot chooses one motion primitive from its candidate motion
primitive set to explore a region of the environment.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Submodular Set Functions

Definition 1 (Submodularity [21]): A submodular function
f : 2V 7→ R is a set function, satisfying the property f(X ∪
{v}) − f(X ) ≥ f(Y ∪ {v}) − f(Y), where V is the ground
set, X ⊆ Y ⊆ V , and v ∈ V \ Y .

The power set 2V is the set of all subsets of V , including
∅ and V itself. A set function is monotone non-decreasing if
f(X ) ≤ f(Y) when X ⊆ Y ⊆ V . Submodularity appears in
a wide variety of robotics applications. We refer the reader to
[22], [23] for more details.

Definition 2 (Marginal gain): For a set function f : 2V 7→ R,
let the marginal gain of adding element v ∈ V into set X ⊆ V
be fX (v) , f(X ∪ {v})− f(X )1.

Definition 3 (Curvature [24]): Let f : 2V 7→ R be a
monotone non-decreasing submodular function, we define the
curvature of f(·) as cf = 1 − minv∈V

f(V)−f(V\{v})
f(v) , where

v ∈ V .
This curvature represents the submodularity level of f(·).

It holds that 0 ≤ cf ≤ 1. If cf = 0, then f(·) is a modular
function and f(X ∪ {v}) − f(X ) = f(v). If cf = 1, then
f(X ∪ {v})− f(X ) = 0, where X ⊆ V and v ∈ V \ X .

B. Problem Formulation

Robots, actions, and rewards: Consider a team of N robots
denoted by R = {1, . . . , N}. Each robot is equipped with
one sensor. There is a (undirected) communication graph2

G = (R, E) associated with nodes R, and edges E such that
(i, j) ∈ E if i and j can communicate with each other. We
denote by Ni the neighbors of robot i. The diameter d(G) of
the communication G is the greatest length of the shortest
paths between vertices. The communication is assumed to
be synchronized, where every robot has a clock that ticks
according to a global clock. Each robot i ∈ R has a set of
candidate actions Vi and can only choose one action from
Vi at each execution step. For example, in motion planning
using motion primitives, the robot can only choose one motion
primitive from its candidate motion primitives at a time. As
shown in Fig. 2, robot 1 chooses action v11 from its available
action set V1 = {v11 , v12 , v13} and robot 2 chooses action v23

1We will use v to represent {v} if there is no confusion.
2It is worth noting that the proposed algorithm also works for directed

communication graphs.
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from its available action set V2 = {v21 , v22 , v23 , v24}, yielding
the shaded explored area. We denote by V ,

⋃
i∈R Vi the

ground set containing all robots’ possible actions. There is an
reward associated with any action. Also, the reward associated
with action v11 is the gray explored area. The function value
f(S) or the combined reward associated with v11 and v23 is the
explored gray areas.

Objective Function: We use a non-decreasing and submod-
ular function f : 2V → R to model the quality of each valid
action set S ⊆ V since the diminishing return property of
objective functions is common in robotics. For example, in
Fig. 2, f(·) measures the extent of the joint area explored
by chosen actions S = {v11 , v23} (represented by the gray
areas), which is a well-known coverage function that exhibits
the submodularity property [22].

Assumption 1 (Attacks): We assume the robots encounter
worst-case attacks that result in their sensor DoS failures.
Thus, robots can still communicate with their neighbors even
though their sensors are denied or blocked. The maximum
number of anticipated attacks is upper bounded by K, (K ≤
N), where N is the number of robots.

Problem 1 (Distributed resilient multi-robot action selection
in adversarial environments): The robots, by communicating
actions and rewards with their neighbors over the communi-
cation graph G, choose action set S (per robot per action) to
maximize a submodular objective f(·) against K worst-case
attacks. That is

maximize
S⊆V

min
F⊆S

f(S \ F)

subject to |S ∩ Vi| = 1,∀ i ∈ R,
|F| ≤ K,

(1)

where R contains the indexes of the robots in the system, F
denotes the action set associated with the attacked sensors,
and Vi is the available action set for robot i.

The first constraint ensures that robot i only chooses one
action from its action set Vi. The “min” operator indicates the
attacks we consider are the worst-case attacks. The constraint
|F| ≤ K captures the problem assumption that at most K
sensors in the team can fail or get attacked.

In this problem, each robot needs to take other robots’
actions into consideration while making its decision. That is
because neighboring robots’ selected actions may have an im-
pact on local robot’s action selection. In other words, different
action selection sequences result in different performances.

III. A CONSISTENT ALGORITHM FOR DISTRIBUTED
RESILIENT SUBMODULAR MAXIMIZATION

We present a distributed resilient algorithm (Algorithm 1)
for solving Problem 1. At a high level, Algorithm 1 contains
two main procedures GENERATEREMOVALS (Algorithm 2)
and GENERATECOMPLEMENTS (Algorithm 3). In the follow-
ing, we present and analyze these procedures from robot i’s
perspective since other robots will follow the same procedures.
In general, robot i will use these two procedures to approxi-
mate the following two sets:
• Si1: the set that approximates the optimal worst-case

removal set. Since computing the optimal worst-case

Algorithm 1 Distributed resilient selection for robot i
Input:
• Action set Vi; number of anticipated attacks K;
• Communication graph G; objective function f(·).

Output: Set S .
1: Si1 ← ∅,Si2 ← ∅, αi

1 ← 0, αi
2 ← 0;

2: Si1 ←GENERATEREMOVALS(Si1, αi
1);

3: Si2 ←GENERATECOMPLEMENTS(Si1,Si2, αi
2);

4: S ← Si1 ∪ Si2.

Algorithm 2 (Phase I) Generate approximated removal set for
each robot i

1: procedure GENERATEREMOVALS(Si1, αi
1)

2: while αi
1 < 2d(G) do

3: if Si1 = ∅ then . 1) Initialization
4: Si1 ← argmaxv∈Vi f(v);
5: f(s)← maxv∈Vi f(v);
6: end if
7:
8: Si1 ← Si1 ∪ S

j
1 ,∀ j ∈ Ni; . 2) Communication

9: M = min(K, |Si1|); . 3) Local computation
10: Si1 ← top M actions 3 in Si1;
11: send (Si1, {f(s)}),∀ s ∈ Si1 to all j ∈ Ni;
12: update αi

1.
13: end while
14: end procedure

removal set is intractable, we use Si1 as an approximation.
We denote by A the indices of the robots used by Si1. This
is the phase I.

• Si2: the set that approximates the optimal set that maxi-
mizes the objective function using V \Vi,∀ i ∈ A. Again,
this is an approximation since computing the optimal set
is intractable. This is phase II.

These two procedures will be executed sequentially. Robot i
will use αi

1 and αi
2 as two counters for different phases to

decide whether to stop the corresponding procedure or not.
Upon the stopping of Algorithm 1, both Si1 and Si2 converge.
The final solution of Problem 1 will then be Si1 ∪ Si2.

In each phase, robot i will approximate and update Si1 and
Si2 through the following processes:

1) Initialization, which is used to make the first approxima-
tion.

2) Inter-robot communication, which is used to combine its
local approximation with neighbors’ approximations.

3) Local computation, which is used to update local approx-
imation.

A. Phase I: Generate Approximated Removals

The procedure for generating approximated removals is
called GENERATEREMOVALS (Algorithm 2). This procedure

3Top M actions in action set Si1(|Si1| ≥ M): given the function values
f(s) of all actions s ∈ Si1, sort these function values in a descending order,
and set the M actions corresponding to the first M function values as the top
M actions in Si1.
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aims to approximate K action removals S1 (|S1| = K)
through the below processes.

1) Initialization: In Algorithm 2, robot i first selects an
action that contributes the most to the objective function f
regardless of other robots’ selections. The selected action is
s ∈ argmaxv∈Vi f(v). Following the constraint |S ∩ Vi| =
1,∀ i ∈ R, robot i is only allowed to select one action from its
candidate action set Vi to update its action set Si1. Meanwhile,
f(s) is also recorded.

2) Inter-robot communication: To update i’s local approx-
imation set Si1, robot i needs to combine j’s approximation
Sj1 ,∀ j ∈ Ni. Since our task in this phase is to approximate
K action removals, we can merge j’s approximation as
Si1 ← Si1 ∪ S

j
1 .

3) Local computation: Once receiving neighbor j’s action
set Sj1 , robot i updates its action set Si1 based on Sj1 . We first
form a new candidate set Si1 ← Si1 ∪ S

j
1 to update Si1. Then,

we need to select the top K actions for robot i. There are two
cases:
• If |Si1| ≤ K, there is no need to update Si1.
• If |Si1| > K, robot i selects the top K actions from Si1.

In Algorithm 2 lines 9-10, we combine these two cases as a
single operation. That is, robot i needs to select top m :=
min(K, |Si1|) actions from Si1. Finally, robot i shares Si1 and
the corresponding action values f(s),∀ s ∈ Si1 with all its
neighbors j ∈ Ni.

4) Stopping condition: After one cycle of local computation
and inter-robot communication, the local counter αi

1 will be
incremented by 1. Finally, when αi

1 reaches 2d(G), robot i
stops and all robots have an agreement on S1.

B. Phase II: Generate Approximated Complements

The procedure for generating the approximated comple-
ments is GENERATECOMPLEMENTS shown in Algorithm 3.
This procedure aims to approximate N − K greedy action
selections S2 (|S2| = |R \ A| = N − K) for the remaining
robots R \ A through inter-robot communication and local
computation with A denoting the robots that select actions in
phase I. Depending on whether robot i is used as removals or
not, robot i in phase II will have two different functionalities:
• If i ∈ A, then robot i acts as a conveyor only to merge

the approximation Sj2 from j,∀ j ∈ Ni and broadcast
the merged/updated Si2 to j,∀ j ∈ Ni. So, robot i only
participated in inter-robot communication.

• If i ∈ R\A, robot i also needs to update its approxima-
tion Si2 using the local computation process.

In the following, we demonstrate phase II from robot i’s
perspective assuming i ∈ R \ A. If i ∈ A, then the local
computation process will be skipped for robot i.

1) Initialization: At the first iteration of phase II, Si2 = ∅
and thus robot i can directly update Si2 as the action with
the maximum marginal gain based on the empty set. That is,
s ∈ argmaxv∈Vi f∅(v). Then, Si2 is updated as Si2 ← s. The
corresponding marginal gain f∅(s) is also recorded.

2) Inter-robot communication: Let us consider the case
where |Si2| = n with n ≤ N−K at some point before the algo-
rithm stops. We first consider s ∈ Si2 in the descending order

Algorithm 3 (Phase II) Generate complements for robot i

1: procedure GENERATECOMPLEMENTS(Si1,Si2, αi
2)

2: while αi
2 < 2d(G) do

3: if Si2 = ∅ then . 1) initialization
4: s ∈ argmaxv∈Vi f∅(v);
5: Si2 ← {s};
6: end if
7:
8: for j ∈ Ni do . 2) inter communication
9: Si+2 ← sort({Si2,S

j
2}, ‘descend’);

10: Si+2 ← remove redundant actions in Si+2 ;
11: Si+2 ← remove order changed actions in Si+2 ;
12: Si2 ← Si+2 ;
13: end for
14:
15: X ← ∅; . 3) local computation
16: for sn ∈ Si2, n = 1, . . . , |Si2| do
17: g ← f{s1,...,sn−1}(sn);
18: if fX (X ∪ v) ≥ g,∀ v ∈ Vi then
19: s ∈ argmaxv∈Vi fX (X ∪ v);
20: X ← X ∪ {s};
21: break;
22: end if
23: X ← X ∪ {sn}.
24: end for
25: Si2 ← X ;
26:
27: send Si2 and marginal gains of s ∈ Si2 to Ni;
28: update αi

2.
29: end while
30: end procedure

they are added through the local computation procedure. For
example, if |Si2| = n, we can write Si2 as Si2 = {s1, . . . , sn},
such that f∅(s1) ≥ . . . ≥ f{s1,...,sn−1}(sn). We also use γ(·)
to denote the order of action s ∈ Si2 as

γ(s1) = 1, . . . , γ(sn) = n.

Similarly, we also apply this reordering procedure to
Sj2 ,∀ j ∈ Ni. Thus, there is also a marginal gain and an order
associated with the action s ∈ Sj2 . With the marginal gains and
orders ready, we are ready to merge Sj2 with Si2. For every Sj2 ,
we augment Si2 with Sj2 and apply an operation as

Si+2 ← sort({Si2,S
j
2}, ‘descend’).

This operation is read as “s ∈ {Si2,S
j
2} are sorted in a

descending order based on the associated marginal gains”.
Remove redundant actions: The merged set Si+2 may

contain redundant actions. By redundant actions, we refer to
the actions s ∈ Si+2 having the following redundant action
properties:

• s appears in Si2 and Sj2 . e.g., s = s′ where s ∈ Si2 and
s′ ∈ Sj2 ;

• The associated marginal gains are the same.
• The orders in Si2 and Sj2 are the same. e.g., γ(s) = γ(s′).
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We can check these properties for each v ∈ Si+2 against all
other actions to remove the redundant actions.

Remove order changed actions: After the above process,
we know that there is an order associated with s,∀ s ∈ Si+2 .
Similarly, we also know that s ∈ Si2 and s ∈ Sj2 also have
their orders. If the order of any action is changed before and
after the augmentation, this action and the actions having lower
marginal gains than this action’s marginal gain will be invalid.
This rule is from the submodularity of f(·). We can then
use the following properties to remove order changed actions.
Specifically, we need to remove any s ∈ Si+2 if s satisfies the
following order changed properties:
• s appears in Si+2 and Si2 (or Sj2). e.g., s = s′ where
s ∈ Si+2 and s′ ∈ Si2 (or s′ ∈ Sj2).

• The orders are not the same. e.g., γ(s) 6= γ(s′).
This operation can be illustrated by the following example.

If the local approximation Si2 is

Si2 = {s1, s2} and f∅(s1) ≥ fs1(s2),

Then, the orders of s1, s2 ∈ Si2 are as follows γ(s1) =
1, γ(s2) = 2. Also, if a neighbor j’s approximation is

Sj2 = {s2, s3} and f∅(s2) ≥ fs2(s3).

Then, the orders of s2, s3 ∈ Sj2 are γ(s2) = 1, γ(s3) = 2.
Now consider the case where the augmented set is Si+2 =
{s1, s2, s3}, and the marginal gains are such that

f∅(s1) ≥ fs1(s2)︸ ︷︷ ︸
s2∈Si

2

= f∅(s2)︸ ︷︷ ︸
s2∈Sj

2

≥ fs2(s3). (2)

After applying the above redundancy removal procedure, there
may exist a case where

f{s1,s2}(v) > f{s1,s2}(s3),

where v ∈ V \ (Si1 ∪ {s1, s2}). In this case, s3 is no longer
a valid action in Si+2 as action v has a higher marginal gain.
To deal with this case, we can use action orders. From the
marginal gains relations in (2), we have

γ(s1) = 1, γ(s2)︸ ︷︷ ︸
s2 ∈ Si

2

= 2, γ(s2)︸ ︷︷ ︸
s2 ∈ Sj

2

= 3, γ(s3) = 4.

Also, we know that the original orders of s2, s3 ∈ Sj2 are

γ(s2) = 1, γ(v3) = 2, where s2, s3 ∈ Sj2 .

So, the order of s2 and s3 where s2, s3 ∈ Sj2 are changed after
merging. Therefore, we need to remove these two actions from
Si+2 . Finally, the augmented approximation is assigned to Si2
as Si2 ← Si+2 .

3) Local computation: After the inter-robot communication
process, robot i may need to change its original action selec-
tion. That is because robot i made its selection before knowing
its neighbors’ approximations (Sj2 ,∀ j ∈ Ni). Once receiving
Sj2 ,∀ j ∈ Ni, robot i can update its own action selection, i.e.,
v ∈ Vi.

We update robot i’s action selection based on the marginal
gain of v ∈ Vi for every possible combination of its neighbors’

selections. The necessity of this operation is from the obser-
vation that the marginal gain of an action will be changed if
the already selected action set is changed. For example, after
the inter-robot communication, if we have Si2 = {s1, . . . , sn}
and v /∈ Si2,∀ v ∈ Vi, we then need to check the marginal
gain of v ∈ Vi when v has different orders in Si2. Since we
already know the associated marginal gains of s ∈ Si2, we can
compare

max
v∈Vi

f∅(v) vs. f∅(s1),

...
max
v∈Vi

f{s1,...,sn−1}(v) vs. f{s1,...,sn−1}(sn).

Whenever ∀ v ∈ Vi generates a better marginal gain than the
compared one, we replace the compared action with the action
v and delete the actions selected after the compared one. This
is because if the orders of the actions are changed, then the
marginal gains are invalid. This operation is shown in lines 15-
25 (Algorithm 3). Meanwhile, the associated marginal gain is
also updated. Finally, the updated Si2 along with the marginal
gains of s ∈ Si2 are broadcasted to j ∈ Ni.

4) Stopping condition: After one cycle of local computation
and inter-robot communication, the local counter αi

2 will be
incremented by 1 if there is no change of Si2 before and after
these two processes. Otherwise, the counter αi

2 is reset to
0. When αi

2 reaches 2d(G), where d(G) is the diameter of
G, robot i stops operations. Meanwhile, all robots have an
agreement on the approximation of S2.

IV. PERFORMANCE ANALYSIS

Lemma 1: The procedure GENERATEREMOVALS (Algo-
rithm 2) for finding the approximated removals has the fol-
lowing performance:

1) Approximation performance: The approximated removals
for robot i is Si1 = S1, where S1 is the K-max consensus
result.

2) Convergence time: The algorithm takes d(G) steps to
converge, where d(G) is the diameter of G.

3) Computational complexity: The computational complex-
ity for every robot is at most O(|Vi|).

Proof: 1). Approximation performance: In the centralized
scenario, we know that we need to find the top K actions
to approximate the removal set. In the distributed scenario,
Si1 is updated as Si1 ← argmaxv∈V1(i) f(v) at the beginning.
Assume that i and j are different before communicating with
each other. Upon receiving Sj1 , robot i’s approximation Si1
is updated by using min(K, |Si1 ∪ S

j
1 |) actions as shown in

line 9 (Algorithm 2). Similarly, this procedure is also applied
to j. Thus, robot i and j will agree with each other on the
top K actions after communication. Finally, when all robots
r ∈ R receive other robots’ approximation after d(G) steps,
they achieve a consensus on the top K actions.

2) Convergence time: In every execution of Algorithm 2,
i needs to update Si1 through the received Sj1 from j ∈ Ni.
Similarly, it takes d(G) steps for i to receive Sr1 from r that has
the longest communication distance. During this procedure,
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every robot can receive all other robots’ approximation at least
once. Thus, Algorithm 2 takes d(G) steps to converge.

3) Computational complexity: Robot i needs |Vi| evaluations
to find the largest contribution s ∈ argmaxv∈Vi f(v). After
communications, if s ∈ Si1, then s is among the top K
actions. If s /∈ Si1, then s is replaced by other actions with
larger contributions and we do not need to evaluate for robot
i again. So, the number of evaluations for every robot is at
most O(|Vi|).

Lemma 2: The procedure GENERATECOMPLEMENTS (Al-
gorithm 3) for finding the complements has the following
performance:

1) Approximation performance: The approximated comple-
ments for i is Si2 = S2, where S2 is the centralized greedy
solution generated by using marginal gains.

2) Convergence time: In the worst-case, the algorithm con-
verges in 2(N − K + 1)d(G) steps, where d(G) is the
diameter of G.

3) Computational complexity: The computational complex-
ity for every robot is at most O((N −K)2|Vi|).

Proof: 1). Approximation performance: When merging Sj2
with Si2, we first use the sort(·) procedure to maintain the
orders of the actions s ∈ Si+2 regardless of the redundancy
and the orders of the actions in Si+2 as shown in line 9
of Algorithm 3. Then, through the operation described in
Section III-B (also in lines 10-11 of Algorithm 3), we resolve
these two issues by removing any s ∈ Si+2 that is either
redundant or order changed. In local computation, when robot
i updates its action set, the marginal gains of s ∈ Si2 \ Vi are
used as oracles. In the local computation procedure, when any
v ∈ Vi replaces the compared action, the actions having lower
marginal gains in Si2 are removed from Si2. This procedure
maintains the descending orders of s ∈ Si2 while updating
robot i’s contribution. Therefore, all these procedures help to
keep the descending order of s ∈ Si2. When these procedures
are applied to all robots in R, the system converges to
the same approximation Si2 since every robot will have an
agreement on at least one action after each communication.
Also, since the descending orders of v ∈ Si2 are kept during
all communications, the final converged Si2 is the same as the
centralized solution. That is, Si2 = S2.

2) Convergence time: Through the above analysis, we know
that if Si2 6= S

j
2 , then this disagreement is resolved through

communications. In an extreme case, we assume that the
communication distance between robot i and robot r is d(G).
It then takes 2d(G) steps for i to agree with r on at least one
action that is selected by i or r. Also, maxi∈R |Si2| = N −K.
Therefore, it takes at most 2(N −K)d(G) steps to reach the
final agreement. Meanwhile, robot i needs to take another
2d(G) steps to confirm the convergence.

3) Computational complexity: Algorithm 3 needs at most
|Vi||Si2 ∪ S

j
2 | evaluations during each local computation pro-

cedure since i checks its maximum contribution against every
combination of the actions in the merged set Si2 ∪ S

j
2 . Also,

it holds that maxi,j∈R |Si2 ∪ S
j
2 | = N − K. Therefore,

the computational complexity for every robot is at most
O((N −K)2|Vi|).

Theorem 1: Algorithm 1 has the following performance:

1) Performance: The approximation ratio is

f(S\F?) ≥ max{1− cf
1 + cf

,
1

1 +K
,

1

|R| −K
}f(S?\F?).

where S? is an optimal solution and F? is an optimal
removal set with respect to S?.

2) Convergence time: In the worst-case, the algorithm con-
verges in (2N − 2K + 3)d(G) steps, where d(G) is the
diameter of G.

3) Computational complexity: The computational complex-
ity for every robot is at most O((N −K)2|Vi|).

Proof: 1). Approximation performance: From Lemma 1 and
Lemma 2, we know that Si1 = S1 and Si2 = S2, where
S1 and S2 are the corresponding centralized solutions. Then,
the approximation performance of the distributed resilient
algorithm (Algorithm 1) is the same as that of its centralized
counterpart [7]. That is,

f(S \ F?) ≥ max

{
1− cf
1 + cf

,
1

1 +K
,

1

|R| −K

}
f(S? \ F?).

where S? is an optimal solution and F? is an optimal removal
set with respect to S?.

2) Convergence time: Based on the results from Lemma 1
and Lemma 2, we know that the convergence time is (2N −
2K + 3)d(G).

3) Computational complexity: Combining the results from
Lemma 1 and Lemma 2, we have the computational complex-
ity as O((N −K)2|Vi|).

V. NUMERICAL EVALUATION

A. Simulation Setup

Environment settings: We verify the performance of Algo-
rithm 1 by implementing it into a scenario where a distributed
multi-robot system explores an environment modeled by a
Gaussian mixture model (GMM). Specifically, the environ-
ment is generated as z(x, y) =

∑B
`=1 r`b`(x, y) = r>b, where

(x, y) are 2D coordinates, r` : R 7→ R are the weights for
the basis functions b` : R2 7→ R,∀ ` = 1, . . . , B. Also, r =
[r1, . . . , r`]

> and b = [b1, . . . , b`]
> are the stacked weights

and basis functions respectively. The number of basis function
and variances are selected randomly. In the simulation, we use
a 200 × 200 field to represent the environment. There is an
environmental importance associated with each location. The
importance value of a location equals to the GMM value of
that location.

Compared algorithms: We compare the performance of
Algorithm 1, which is referred to as “distributed-resilient”,
with the performance of the following methods:
• An optimal method, where the solution is generated

through a brute-force search.
• A semi-dist method [10], where the solution is generated

by first partitioning robots into groups and then running
a centralized resilient algorithm in each group.

• A cent-greedy method [21], where the solution is gener-
ated greedily based on marginal gains that maximize the
objective function in a centralized manner.
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Fig. 3. The statistics of the utilities of the five different methods over 200
trials with the number of robots N = 5 and the number of attacks K = 3.
The box-plot demonstrates the quartiles of different solutions.

• A cent-rand method, where the solution is generated
randomly in a centralized manner.

Multi-robot system settings: We compare the performance
of the system using two different settings: 1), In the first
setting, we compare the performance of our distributed re-
silient method with the optimal, the semi-dist, the cent-greedy
method, and the cent-rand methods. We set the number of
robots as N = 5, and the maximum number of attacks as
K = 3. Then, we run 200 trials to compare the performance.
We generate random initial locations for the robots in each
trial, and each robot has four actions (forward, backward,
left, and right). 2), In the second setting, we compare the
performance of the resilient method, the semi-dist, the cent-
greedy method, and the cent-rand method. Specifically, we
set the number of robots as N ∈ {30, 40, 50}. The corre-
sponding number of attacks K is randomly generated from
[0.5N, 0.75N ] and rounded to an integer. This setting means
that at least 50% of the robots will be attacked, and at most
75% of the robots will be attacked. The robots’ rewards are
added with white Gaussian noise with a mean of 10% of the
original rewards and a variance of 5% of the original rewards.
We then run 50 trials for each setting. However, since finding
the worst-cast attacks is intractable and we aim to test the
proposed algorithm’s scalability, we use greedy attacks in this
case. That is, the attacker attacks the robots’ sensors greedily
using the standard greedy algorithm [21]. Common simulation
parameters include: in each of the above settings, the sensing
range of the robots is set to 10; the reward of an action
is the environmental importance explored by this action. In
each trial, the robots are randomly placed in a region with
x ∈ [50, 100], y ∈ [50, 100]. Finally, we perform Monte Carlo
simulations to test the performance of these four methods with
the same simulation parameters.

B. Performance Comparison

Performance metric: The performance of different methods
is captured by the sum of the importance in the explored
area after worst-case attacks. Specifically, we first generate
a solution for each method. Then, attackers attack and remove
the contributions of attacked robots. Since finding worst-case
attacks is intractable, we use a brute-force search to find the
worst-case attacks for each generated solution.

Fig. 4. The optimality ratios of different solutions with respect to their
corresponding optimal solutions in each of the 200 trials.

(a) (b)

Fig. 5. (a). The robots (N = 5) are placed randomly in the environment, and
a connected communication graph G is initialized randomly. (b). The resilient
solution after the worst-case attacks (K = 3). The selections of worst-case
attacked sensors are in gray. The selections of unattacked sensors are in cyan.

In the first setting, we compare the statistics of the utilities
of different methods using 200 trials, as shown in Fig. 3. The
utilities in the box-plot reflect the performance of different
methods by using the quartiles of each solution. As suggested
in the result, we observe that the median of the utilities
generated by the proposed distributed resilient method shows
better performance than that of the other three methods except
for the optimal method.

In Fig. 4, we compare the optimality ratios of different
solutions with respect to their corresponding optimal solutions
in each setting. Specifically, the optimality ratio range of
the proposed distributed-resilient is [0.77, 1]. The optimality
ratio range of the semi-distri-resilient method is [0.75, 1]. The
optimality ratio range of the centralized-greedy method is
[0.55, 1] The optimality ratio range of the centralized-random
method is [0.35, 1]. This further illustrates that the proposed
algorithm (Algorithm 1) is superior to the other methods
since most of the cases have a close to optimal optimality
ratio as shown in Fig. 4(a). In Fig. 5(a), we demonstrate
the environment and the initial configuration of the robots of
one instance. Then, the solution of the proposed distributed-
resilient method using one instance is shown in Fig. 5(b).

In the second setting, we compare the mean of the utilities
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Fig. 6. The utilities of the four different methods with N = 30, 40, and 50
and with the number of attacks K (for each N ) randomly generated from
[0.5N, 0.75N ].

Fig. 7. The evolution of the utilities of the 7 robots that are not attacked when
the number of robot N = 15 robots and the number of attacks K = 8.

of different methods. Fig. 6 shows the utilities of four different
approaches. The result demonstrates that Algorithm 1 yields
superior results compared with the other methods. Finally, we
plot in Fig. 7 the evolution of utilities for different robots
when the number of robots is 15, and the number of attacks is
8, demonstrating the convergence of the proposed distributed
resilient method.

Remark 5.1: Under our problem formulation, imperfect
motion and sensing impact our algorithm in two ways: they
disturb how the robots evaluate the reward of their actions
and the ability to execute high-reward actions as planned.
These influences do not change the fundamental nature of
the problem but would instead impact the collected reward.
However, the proposed algorithm is still superior to the other
three methods, as shown in Fig. 6.

VI. CONCLUSIONS AND FUTURE WORK

In this letter, we proposed a fully distributed algorithm for
the problem of the resilient submodular action selection. We
proved that the solution of the proposed algorithm converges
to the corresponding centralized algorithm. We evaluated the
algorithm’s performance through extensive simulations. Direc-
tions for future work include exploiting connectivity of the
system when communications are attacked, investigating the
different importance of the robots (nodes) when the system is
attacked, and revisiting our problem with noisy motion and
perception considered.

REFERENCES

[1] L. Zhou and P. Tokekar, “Multi-robot coordination and planning in
uncertain and adversarial environments,” Current Robotics Reports, pp.
1–11, 2021.

[2] K. Saulnier, D. Saldana, A. Prorok, G. J. Pappas, and V. Kumar,
“Resilient flocking for mobile robot teams,” IEEE Robot. Autom. Lett.,
vol. 2, no. 2, pp. 1039–1046, 2017.

[3] S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus, “Guaranteeing
spoof-resilient multi-robot networks,” Auton. Robot., vol. 41, no. 6, pp.
1383–1400, 2017.

[4] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Resilient
distributed state estimation with mobile agents: Overcoming Byzantine
adversaries, communication losses, and intermittent measurements,”
Auton. Robot., vol. 43, no. 3, pp. 743–768, 2019.

[5] K. Wardega, R. Tron, and W. Li, “Masquerade attack detection through
observation planning for multi-robot systems,” in Proc. Int. Conf. Auton.
Agents Multi. Syst., 2019, pp. 2262–2264.

[6] D. R. Raymond and S. F. Midkiff, “Denial-of-service in wireless sensor
networks: Attacks and defenses,” IEEE Pervasive Comput., vol. 7, no. 1,
pp. 74–81, 2008.

[7] V. Tzoumas, K. Gatsis, A. Jadbabaie, and G. J. Pappas, “Resilient
monotone submodular function maximization,” in Proc. IEEE Conf.
Decis. Control, 2017, pp. 1362–1367.

[8] L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar, “Resilient active
target tracking with multiple robots,” IEEE Robot. Autom. Lett., vol. 4,
no. 1, pp. 129–136, 2018.

[9] G. Shi, L. Zhou, and P. Tokekar, “Robust multiple-path orienteering
problem: Securing against adversarial attacks,” in Proc. Robot.: Sci.
Syst., 2020.

[10] L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar, “Distributed attack-
robust submodular maximization for multi-robot planning,” in Proc.
IEEE Int. Conf. Robot. Autom., 2020, pp. 2479–2485.

[11] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, 2009.

[12] G. Qu, D. Brown, and N. Li, “Distributed greedy algorithm for multi-
agent task assignment problem with submodular utility functions,”
Automatica, vol. 105, pp. 206–215, 2019.

[13] R. K. Williams, A. Gasparri, and G. Ulivi, “Decentralized matroid op-
timization for topology constraints in multi-robot allocation problems,”
in Proc. IEEE Int. Conf. Robot. Autom., 2017, pp. 293–300.

[14] J. Liu and R. K. Williams, “Monitoring over the long term: Intermittent
deployment and sensing strategies for multi-robot teams,” in Proc. IEEE
Int. Conf. Robot. Autom., 2020, pp. 7733–7739.

[15] J. Liu and R. K. Williams, “Coupled temporal and spatial environment
monitoring for multi-agent teams in precision farming,” in IEEE Conf.
Control Technol. Appl., 2020, pp. 273–278.

[16] M. Corah and N. Michael, “Distributed matroid-constrained submodular
maximization for multi-robot exploration: Theory and practice,” Auton.
Robots, vol. 43, no. 2, pp. 485–501, 2019.

[17] J. Liu and R. K. Williams, “Submodular optimization for coupled task
allocation and intermittent deployment problems,” IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 3169–3176, 2019.

[18] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden, “The impact
of information in greedy submodular maximization,” IEEE Transactions
on Control of Network Systems, 2018.

[19] E. Mackin and S. Patterson, “Submodular optimization for consensus
networks with noise-corrupted leaders,” IEEE Trans. Autom. Control,
vol. 64, no. 7, pp. 3054–3059, 2018.

[20] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in linear multi-agent
systems,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 283–296,
2013.

[21] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Math.
Program., vol. 14, no. 1, pp. 265–294, 1978.

[22] A. Krause and D. Golovin, “Submodular function maximization,” in
Tractability: Practical Approaches to Hard Problems. Cambridge Uni-
versity Press, 2014, pp. 71–104.

[23] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Springer Science & Business Media, 2003, vol. 24.
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