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Abstract—We study two new informative path planning prob-
lems motivated by the use of aerial and ground robots in preci-
sion agriculture. The first problem, termed Sampling Traveling
Salesperson Problem with Neighborhoods (SAMPLINGTSPN),
is motivated by scenarios where Unmanned Ground Vehicles
(UGVs) are used to obtain time-consuming soil measurements.
The input in SAMPLINGTSPN is a set of possibly overlapping
disks. The objective is to choose a sampling location in each
disk, and a tour to visit the set of sampling locations so as to
minimize the sum of the travel and measurement times. The
second problem concerns obtaining the maximum number of
aerial measurements using an Unmanned Aerial Vehicle (UAV)
with limited energy. We study the scenario where the two types
of robots form a symbiotic system—the UAV lands on the UGV,
and the UGV transports the UAV between deployment locations.

This paper makes the following contributions: First, we present

an O

(

rmax

rmin

)

approximation algorithm for SAMPLINGTSPN,

where rmin and rmax are the minimum and maximum radii of
input disks. Second, we show how to model the UAV planning
problem using a metric graph and formulate an orienteering
instance to which a known approximation algorithm can be
applied. Third, we apply the two algorithms to the problem of
obtaining ground and aerial measurements in order to accurately
estimate a nitrogen map of a plot. Along with theoretical results,
we present results from simulations conducted using real soil
data and preliminary field experiments with the UAV.

I. INTRODUCTION

Informative path planning is a fundamental problem for

robotic sensing systems. The goal of informative path planning

is to compute paths for robots acting as mobile sensors in order

to accurately estimate some underlying phenomenon, typically

a spatio-temporal field [2], [3]. In many cases, nearby points in

the field are correlated [4] which enables efficient informative

path planning [5]–[7]. In this paper, we introduce and study

new informative path planning problems that are motivated by

the use of robots in precision agriculture.

Precision agriculture is a data-driven technique to estimate

and predict the health of crops in a farm, and use this

information to design targeted fertilizer treatment plans [8].

Precision agriculture can improve crop productivity and farm

profits through better management of farm inputs, leading to

higher environmental quality [9]. By measuring soil nitrogen
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levels across a farm and applying the right level of nitrogen

at the right time and place, it is possible to reduce fertilizer

usage by 25% without affecting corn yield [10].

A key component of precision agriculture is data collection.

We are building a robotic data collection system with small,

low-cost Unmanned Aerial Vehicles (UAVs) and Unmanned

Ground Vehicles (UGVs) working together. Ground robots are

capable of traveling long distances, carrying large loads and

measuring soil data but cannot obtain aerial imagery. Small

aerial vehicles can take images from a low altitude but have

limited battery life and cannot obtain soil measurements. Our

system will combine the strengths of ground and aerial robots

to provide on-demand sensing capabilities.

Without any prior information, data collection reduces to

covering the entire field with, for example, a boustrophedon

path [11]. If some prior information is available, then the robot

can choose key, informative locations to obtain the measure-

ments from. Furthermore, if nearby points are correlated the

robot need not visit a location exactly, but instead visit some

point in its neighborhood.

Obtaining soil measurements with the UGV is likely to be

time-consuming. We can reduce the total time by combining

measurement locations of nearby points with overlapping

neighborhoods. This leads to a novel variant of the classi-

cal Euclidean Traveling Salesperson Problem (TSP) which

we term as the Sampling Traveling Salesperson Problem

with Neighborhoods (SAMPLINGTSPN). The input to SAM-

PLINGTSPN is given by a set of disks in the plane, not all of

the same radius. The output must be a tour for the robot that

obtains a measurement in each disk. The total time of the tour

is given by the sum of the traveling time and the measurement

time. SAMPLINGTSPN is NP-hard as it generalizes the NP-

hard Euclidean TSP. Our main contribution is a O( rmax

rmin

)
approximation algorithm for SAMPLINGTSPN, where rmin

and rmax are the smallest and largest radii of the input disks.

We also study the corresponding planning problem for the

UAV. Unlike soil measurements, aerial measurements, i.e.,

multi-spectral aerial images, can be obtained instantaneously.

However, small UAVs have a limited battery life. Visiting all

input points in a large plot may not be feasible. Hence, we

study the problem of maximizing the number of points visited

subject to the maximum battery life. The general problem of

visiting the most number of points subject to a budget is called

orienteering [12]. Instead of using the UAV alone, we consider

the scenario where the UAV can land on the UGV, and use

the UGV to travel to the next take-off locations. We show

how to plan the motion of this symbiotic UAV+UGV system

on a metric graph, which allows us to apply orienteering

algorithms.

Both planning problems we study are of independent in-



terest. We also verify their utility in our motivating precision

agriculture application. Specifically, we show how the SAM-

PLINGTSPN and symbiotic UAV+UGV planning problems

can be used to accurately estimate nitrogen maps represented

as a Gaussian Process. We perform simulations using real data

collected from an agriculture plot and empirically evaluate the

two algorithms. We also present results from preliminary field

experiments for the UAV.

The rest of the paper is organized as follows. We begin

by presenting the related work in Section II. We describe the

motivating application of precision agriculture and formulate

the two path planning problems in Section III. In Section IV

we introduce the SAMPLINGTSPN problem for the UGV, and

present the O( rmax

rmin

) approximation algorithm. In Section V,

we show how to plan for the symbiotic UAV+UGV paths for

obtaining aerial measurements. Simulation results based on

field data are presented in Section VI, and preliminary field

experiments are presented in Section VII. We finally conclude

with a discussion of future work in Section VIII.

II. RELATED WORK

The work presented in this paper is related to existing

literature in various areas. We discuss each in turn below.

A. Informative Path Planning

The problem of designing sensor trajectories and the related

problem of selecting sensor locations has recently received

much attention. Low et al. [13] presented a control law to

minimize the probability of misclassification in a Gaussian

Process map. The authors enforce measurements to be taken

continuously, and sensors to only move along a 4-connected

grid. Zhang and Sukhatme [14] presented an adaptive search

algorithm for finding the optimal sensor path to estimate a

scalar field. Song et al. [15] presented an algorithm to localize

multiple radio sources using a mobile robot. They presented

upper bounds on the time required to localize the sources up

to a desired probability. Otte et al. [16] studied the problem

of navigating to a global goal while foraging for interesting

locations along the way. They analyzed two greedy strategies

to bound the total distance traveled and verified the bounds

through simulations.

In these works, sensing is considered equivalent to visiting

some neighborhood of a location. That is, measurement time

is zero and the total time of a trajectory is assumed to be pro-

portional to the path length. Time spent for sensing becomes

important when considering persistent monitoring of spatio-

temporal fields. For example, Smith et al. [17] presented an

algorithm for continuously optimizing the speeds of the robots

traveling along given paths in order to frequently observe a

spatio-temporal field. Yu et al. [18] studied the discrete version

where the robots must observe transient events that arrive

at discrete locations with unknown arrival times (but known

statistics). The goal is to choose the time spent at a given lo-

cation. They presented an algorithm that computes the optimal

(in expection) wait times, if the order to visit the locations is

given. They also presented an (1+ǫ)–approximation algorithm

for computing the optimal order. In SAMPLINGTSPN, we

assume that the time for each measurement is fixed. However,

our formulation allows the robot to combine measurements of

nearby locations without any additional cost of measurement.

Krause et al. proposed mutual information as a measure of

uncertainty [4]. An algorithm to place sensing locations was

given which can closely approximate the optimal increase in

mutual information. The work was extended to mobile sensor

routing in [2], and multiple robots in [19]. This work considers

classification uncertainty directly and not mutual information,

and as such these results are not directly applicable.

B. TSPN and Data Mules

The SAMPLINGTSPN problem generalizes TSP and its

variant, Traveling Salesperson with Neighborhoods (TSPN).

In TSPN, we are given a set of geometric neighborhoods, and

the objective is to find the shortest tour that visits at least

one point in each neighborhood. Dumitrescu and Mitchell [20]

presented an 11.15-approximation algorithm for TSPN when

the neighborhoods are possibly-overlapping unit disks centered

at each site. The main difference in SAMPLINGTSPN and

TSPN is that our cost is not just the traveling time of the tour,

but also the total time taken for obtaining soil measurements.

Finding a minimum length/time path does not necessarily

ensure that the robot takes fewer soil measurements, and the

cost for the UGV tour is not necessarily minimized.

Recently, there has been some work on TSPN with stochas-

tic neighborhoods. Kamousi and Suri [21] presented offline

and online approximation algorithms when the centers of the

disks are known, but the radii are i.i.d. random variables. In

contrast, we show how to compute the disk radii when the

underlying field is a spatial map represented as a Gaussian

Process. This allows us to formulate SAMPLINGTSPN with

known and given disk radii.

The most closely related application of TSPN in robotics

is the data muling problem. Bhadauria et al. [22] studied the

problem of computing a minimum time data collection tour for

k robots tasked with wirelessly collecting data from deployed

sensors by visiting a point in the sensor’s communication

range. In their model, robots spend time for both traveling and

downloading data from robots. Tekdas et al. [23] extended this

model to the case where the communication range consists of

two disks centered at the sensor and the inner ring requires

less download time than the outer. In these problems, the

robot has to separately query each sensor, and thus the total

measurement time always equals the number of sensors. On

the other hand, in SAMPLINGTSPN the robot can combine

soil measurements for multiple points and reduce measurement

time by sampling the intersection of their neighborhoods.

Hollinger et al. [24] do allow the robot to communicate

with multiple sensors from the same location without paying

a separate measurement cost. However, their main result is

an exponential-time optimal solution and polynomial time

heuristics for a more general formulation.

A key distinction in data muling is that the robot does

not need to stop while downloading data from the sensors.

For example, Sugihara and Gupta [25] show how to optimize

the speed profile so as to guarantee that the data mule



spends sufficient time to download the data in each sensor’s

neighborhood without stopping. Thus, the sum of travel time

and measurement time as the objective may not be appropriate

in data muling, unlike in SAMPLINGTSPN.

In [26], Alt et al. studied the problem of covering a given

set of points with k radio antennas with circular ranges, where

the algorithm has to choose the center and radius ri for each

circle. They consider a cost function which is a weighted sum

of the length of the tour and the sum of rαi for each disk (α
models the transmission power for the antennas). The main

difference between this problem formulation and ours is that

we do not require the number of samples, i.e., k, to be fixed.

Instead our formulation penalizes higher k in the cost function.

C. Orienteering

The problem of maximizing the number of points visited

by the UAV subject to a battery lifetime constraint is modeled

as an orienteering problem. Blum et al. [12] presented a 4-

approximation to the orienteering problem for complete graphs

with metric edges. We show in Section V how the problem of

selecting the most input points can be solved as an orienteering

problem by constructing a complete graph with metric edges.

D. Heterogeneous Systems

Recently, there has been a significant interest in develop-

ing cooperative aerial and ground/surface/underwater robot

systems. Grocholsky et al. [27] described a system with

coordinating aerial and ground vehicles for the application of

detecting and locating targets. Sujit and Saripalli [28] studied

the problem of exploring an area to detect targets using an

UAV and inspecting the targets with Autonomous Underwater

Vehicles (AUV). The authors compared in simulations three

strategies to address the trade-off between quickly exploring

the environment for all targets, and minimizing the latency

between detection with UAVs and inspection with AUVs.

Tanner [29] presented control laws for the UGVs to form a

grid of sensors and UAVs to fly in a formation over the grid,

such that a target moving on the ground can be detected if it

moves from one grid cell to the other. The main difference

between existing literature and our work is that we explicitly

consider that the UAV can be carried between takeoff locations

by the UGV in the sensor planning phase. The resulting plan

found by our algorithm may consist of multiple deployments

for the UAV, which increases its coverage with limited battery.

E. Robotics in Agriculture

UGVs and UAVs are increasingly being used in agricul-

ture [30]. Typical applications include automated harvest-

ing [31], spraying [32], and yield estimation [33], [34]. A

major emphasis in these works is to improve the sensing

capabilities and autonomous navigation within farms [35].

These works are complementary to our work, where the focus

is on active, informative path planning.

III. MOTIVATION AND PROBLEM FORMULATION

The motivating problem in this paper is that of estimating

a Nitrogen (N) level map, a proxy for crop health. The goal

is to label each point based on the N levels (e.g., “high-N”,

“medium-N”, “low-N”). Depending on the prior information,

some points have a high probability of being misclassified. The

problem we study is that of planning informative tours for the

robots to obtain measurements near points that are potentially

mislabeled.

In this section, we show how to identify points whose

probability of being mislabeled, based on a prior nitrogen map,

is above a threshold. We term these as Potentially Mislabeled

(PML) points. The set of PML points thus identified will be

the input to the planning algorithms.

Our approach can be summarized as shown in Algorithm 1.

Algorithm 1: Symbiotic Path Planning

input : A Map of Soil N Level Labels and Desired

Label Uncertainty

output: A UGV+UAV Tour of Measurement Locations

1 Identify the set of PML points, Xpml, from a given prior

nitrogen map (Section III-A).

2 Compute a disk centered at each such point, such that an

expected measurement within this disk is sufficient to

reduce the mislabeling probability below the user-defined

threshold (Section III-A).

3 Find (an approximation to) the largest subset of the PML

points, Xs ⊆ Xpml, that can be visited by the UAV using

the symbiotic UAV+UGV system, subject to its

maximum battery lifetime constraint (Section V).

4 Compute the UGV tour to obtain ground measurements

for each PML point in Xs (Section IV).

A. Finding Potentially Mislabeled Points

Our operating environment is a farm plot discretized into

a set of points X = {x1, x2, · · · , xn}. We want to estimate

the level of Nitrogen (N) at each point in X by combining

ground and aerial measurements. We use Gaussian Process

regression to estimate the N levels using the two types of

measurements [36].

Previously obtained measurements are used to build a prior

N level map. For each point we associate a most likely estimate

as N(xi), with variance of the estimate given by σ2(xi)
(Figure 1). In general, we are given a set of labels, and each

label Li is specified by a minimum and maximum N level,

L−
i , L

+
i respectively. For clarity, let the task be to classify each

point into three labels: “low-N”, “medium-N”, and “high-N”.

Since we do not have access to the true N levels and

instead have a distribution N(xi), we associate with each

label a probability of being correct. We define Plj(xi) as the

probability that the label j for point xi is correct Plj(xi) =
P(L−

j ≤ N(xi) < L+
j ). Labels can then be assigned to points

based on which is most likely to be correct, given the estimates

of N levels at each point. We use the shorter notation Pl(xi)
to denote the probability of the most likely label.
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Fig. 1. A generated random field using the GP parameters learned from the soil dataset (described in Section VI-A). In all figures, blue indicates low values,
red indicates high values, and green is intermediate values. (a) The ground-truth samples of a soil health map obtained at locations marked by a cross, along
with the GP regression. (b) The data partitioned into three labels. (c) The variance of the sampling. The variance has a regular pattern, since the samples
were obtained along a grid. (d) The mislabel probability. Note mislabel probability is high in many places, even though the variance is roughly uniform and
low since the mislabel probability also depends on the value N(x). (e) The points at which the labeling certainty is below Pd, and the corresponding ranges
described in Equation 9.

We define PML points as all points in X for which the

probability of the most-likely label being incorrect is below a

user-desired value Pd ∈ (0, 1).

Xpml = {xi ∈ X : pmislabeled(xi) ≤ Pd}. (1)

Our goal is to increase the probability of the label being correct

by taking soil and aerial measurements near the PML points.

The previous equation expresses an upper bound on the

probability that N(xi) is below the minimum value of the

current label, L−(xi), or above the maximum, L+(xi). Let

Φ(a) denote the Gaussian cumulative distribution function.

Then we have,

pmislabeled(xi) ≤ Pd (2)

∴ Φ

(

L−(xi)−N(xi)

σ(xi)

)

+ 1− Φ

(

L+(xi)−N(xi)

σ(xi)

)

≤ Pd

(3)

Taking measurements near xi will reduce σ(xi) due to the

spatial correlation of the N values. For any value of N(xi),
there exists a corresponding σ(xi) such that Equation 3 is

satisfied.

First, we define the constant ∆(xi) for each PML point,

∆(xi) = min
(

|L+(xi)−N(xi)|, |L−(xi)−N(xi)|
)

(4)

Now Equation 3 can be expressed more conveniently as,

2 · Φ
(−∆(xi)

σ(xi)

)

≤ pmislabeled(xi) ≤ Pd (5)

Rearranging the previous equation yields the desired value for

σ(xi) as,

−∆x

Φ−1

(

Pd

2

) ≥ σ(xi) (6)

We will use the shorthand σd for the left hand side of

Equation 6 since σd can be calculated from prior data and

can be treated as a constant. For each point, there will be a

different σd depending on the exact value of N(xi), and the

current most likely label L(xi).
Let the measurement location be denoted z, and the sensor

noise of the measurement be σs. The correlation between the

N levels at z and xi is modeled by the Gaussian Process

equations [36]. Thus the new variance at xi, conditioned on

the measurement at point z, satisfies,

σ2(xi|z) =σ2(xi)

−K(xi, z)[K(z, z) + σ2
s ]

−1KT (xi, z) (7)

The function K(·, ·) is the covariance or kernel function of

the Gaussian Process [36]. We fix K(·, ·) to be the squared

exponential function, which is commonly used in precision

agriculture [37].

Recall from Equation 6, σ2(xi|z) should be no greater than

σ2
d. Given the measurement location z, Equation 7 simplifies

as follows,

σ2
d − σ2(xi) ≥ −σ4

f (σ
2
f + σ2

s)
−1 exp(− 1

2l2
||xi − z||2) (8)

σf and l are the hyperparameters of the covariance function,

which are previously learned from the data.

After further rearrangement and taking the natural log of

both sides,

||xi − z||2 ≤ −2l2 log[(σ2(xi)− σ2
d)(σ

2
f + σ2

s)σ
−4
f ]. (9)

Denote the right hand side of Equation 9 by ri. Thus, for

every PML point xi ∈ Xpml (i.e., points where N estimates do

not satisfy Equation 6), we can find a disk of radius ri centered

at xi. A sample obtained inside this disk will yield sufficiently

small variance on N(xi) to determine the proper label with

probability higher than Pd. An example of a field, the field

labels, and the points with high mislabeling probability are

shown in Figure 1.

In the next sections, we show how to plan for the ground

and aerial measurements where the input is the set of PML

points and their corresponding disks. We start with the case

of ground measurements.

IV. UGV PLANNING: SAMPLING TSPN

In our motivating application, the UGV must obtain at

least one soil measurement in the disk corresponding to each

PML point (as described in Section III-A). Measurements for

overlapping disks can be combined. Obtaining a soil mea-

surement is likely to be time consuming. Therefore, instead

of minimizing only the travel time, we seek to optimize the

sum of the travel and measurement time. Motivated by this



scenario, we formulate the following path planning problem,

termed SAMPLINGTSPN.

The input to SAMPLINGTSPN is a set of disks specified as

X = {(x1, r1), . . . , (xn, rn)} where xi is the center of disk

i and ri is its radius. Let rmax and rmin be the maximum

and minimum radii. Imagine a robot which can travel at unit

speed and obtain a sample in Cg units of time. The objective

in SAMPLINGTSPN is:

Given X , find a tour τ of N distinct sample locations to

minimize the cost len(τ)+Cg ·N such that each disk contains

a sample location.

SAMPLINGTSPN generalizes TSPN with disk neighbor-

hoods. The objective in TSPN is to minimize only the length of

the tour. A natural strategy for finding a SAMPLINGTSPN tour

would be to first find a TSPN tour, and then choose sampling

locations on this tour. However, this approach may lead to bad

solutions (see Figure 2 and Section IV-C). Instead, we present

an algorithm which finds a tour whose total time is at most

O( rmax

rmin

) of the optimal time.

(a) (b)

Fig. 2. Solving SAMPLINGTSPN by first finding a TSPN tour, and then
choosing sampling locations on this tour can lead to bad results. (a) The
TSPN tour presented in [20] visits all the disks by touring the circumference
of each disk in the Maximal Independent Set (one shown shaded). This tour
will be forced to take a separate measurement for each outer disk and thus
have O(n) measurement locations. (b) In general, we are not forced to move
along the circumference and can visit a smaller number of locations where
the disks overlap.

We proceed as follows: To introduce the underlying ideas

and the necessary background, we first present a simpler algo-

rithm whose approximation ratio is O(
r2
max

r2
min

). We then present

a more involved algorithm which improves the approximation

factor to O( rmax

rmin

). The main challenge in the analysis of both

algorithms is to compute lower-bounds on the performance of

the optimal solution and to bound the cost of our algorithms

with respect to these lower-bounds.

A. An O(
r2
max

r2
min

)-approximation

The first algorithm, ALG1, contains the following stages:

• Stage 0: Let X̄ be the set of all disks in X with the radius

of each disk set to rmax.

• Stage 1: Compute I = MIS(X̄)
• Stage 2: For each disk d ∈ I , place a grid co-centered

with d and with dimensions 6rmax × 6rmax and with

resolution rmin/
√
2

• Stage 3: Output a TSP tour of all grid points produced

in Stage 2.

In Stage 0, X̄ is a modified version of the input where

the radius of each disk in the input is set to rmax. That

is, X̄ = {(x1, rmax), . . . , (xn, rmax)}. The function MIS

computes a set of maximally independent set of disks: the

disks in I are mutually non-intersecting (independent) and any

disk in X̄ \ I intersects with some disks in X̄ (maximal). The

set I can be computed by a simple greedy procedure: choose

an arbitrary disk d from X̄ , add it to I , remove all disks in

X̄ which intersect d, and repeat the procedure until no such

d exists. Computing the TSP tour in Stage 3 is NP-complete.

However, for any ǫ, a (1+ ǫ)-approximation can be computed

in O(n(logn)O(ǫ−1)) using [38].

It can be easily verified that ALG1 will take a sample

from every disk in X : The center xi of every disk in X
must be within distance 3rmax of the center of some disk

in I (otherwise I would not be maximal). The grid resolution

ensures that even the smallest disk contains a grid point.

We now bound the performance of ALG1. To do this, we

establish lower-bounds on the cost of the optimal algorithm,

OPT. First, we focus on the number of samples.

Claim 1: OPT must take at least |I| measurements.

The claim is easy to see because the disks in I are disjoint

and their radii are set to rmax.

Next, we focus on T ∗, the travel cost of OPT. We observe

that OPT must visit each disk in I and hence,

Claim 2: TSPN(I) ≤ T ∗ where TSPN(I) is the optimal

TSPN tour.

We now bound the cost of ALG1 with respect to these

lower-bounds.

For the sampling cost, for each disk d ∈ I , ALG takes

O(
r2
max

r2
min

) measurements given by the size of the grid. Together

with Claim 1, the measurement cost is within O(
r2
max

r2
min

).

To bound the travel cost, we proceed as follows: we show

that there exists a tour T which visits all grid points whose

cost is within a factor of O( rmax

rmin

) of TSPN(I). Hence, the

optimal TSP tour visiting the grid points in Stage 3, must also

be within this factor. Combined with Claim 2, we obtain a

bound on the tour cost.

To obtain tour T , we simply start with TSPN(I). The new

tour T follows TSPN(I) to visit each disk. Whenever a disk

d ∈ I is visited, it adds a detour to visit all associated grid

points. A simple way of doing this is to move to a corner

of the grid from the center and to scan each column in order

(Figure 5). The added cost of this detour per disk is less than

c · (rmax + 1)× rmax

rmin

, where c is a constant.

So far we established that the tour cost of ALG1 is

T ≤ TSPN(I) + nc
r2
max

rmin

where the second term on the

right is the total cost of the detours.

In order bound the cost of the detour with respect to TSPN,

we adapt Theorem 1 from [23] which, in our notation, states

that the length of any tour that visits n non-overlapping disks

of radius rmax is at least n
2 0.4786rmax. That is, TSPN(I) ≥

n
2 0.4786rmax. This gives, nrmax ≤ 2

0.47TSPN(I).

Therefore, we have



T ≤ TSPN(I) + nc
r2max

rmin

≤ TSPN(I) + c
2

0.47
TSPN(I)

rmax

rmin

≤ c′
rmax

rmin
TSPN(I) ≤ c′

rmax

rmin
T ∗

where c′ is a constant and T ∗ is the tour cost of OPT.

To summarize, the travel cost of ALG1 is O( rmax

rmin

) of OPT,

and the sampling cost is within O(
r2
max

r2
min

). Therefore, the cost

of ALG1 is within O(
r2
max

r2
min

) of OPT.

In the next section, we present our main contribution which

achieves an approximation ratio of O( rmax

rmin

). This is obtained

by replacing the grid points of Stage 2 of ALG1 with a

carefully chosen set of points.

B. An O( rmax

rmin

)-approximation

Stage 2 of ALG1 consists of O(
r2
max

r2
min

) grid points per disk

in the MIS. On the other hand, there could possibly be a single

location within each MIS disk, where an optimal algorithm can

obtain a sample. Our main algorithm, GRIDSAMPLE, chooses

a much smaller set of points as sampling locations, instead of

all grid points, as follows:

• Stage 1: Create a set system, (P,R), from the

arrangement of all disks in X . Compute C =
HITTINGSET(P,R).

• Stage 2: Output a TSP tour of C.

In Stage 1, we solve a hitting set problem. A hitting set

problem is defined for a set system (P,R), where P is a set

of points and R is a collection of subsets of P . The hitting

set solution C ⊆ P is the smallest subset of P, such that

C ∩Ri 6= ∅ for all Ri ∈ R.

p3

p4

p1

p5

p1

p2

p8

p7

p6

Fig. 3. A geometric hitting set instance. We define a collection of sets
R = {Ri} where each Ri is the set of disks that intersect with a point pi.
X is the set of all disks. The hitting set solution finds the minimum subset
of R such that its union is X . The minimum hitting set for this example has
size 2 (e.g., {p2, p6}).

We formulate a geometric hitting set problem by creating

a set system as follows: Consider the arrangement of disks in

X in the plane. This arrangement consists of set of faces, as

shown in Figure 3. We create a set of points P by placing

a point in each face of the arrangement. For each point in

pi ∈ P , let Ri be the set of disks containing p. Let R = ∪Ri

be the set of such sets for all points in P . The solution to the

geometric hitting set problem finds the minimum number of

points in P such that each disk in X has at least one such

point in its interior. It is easy to see that the number of samples

in an optimal SAMPLINGTSPN solution cannot be less than

the size of the optimal hitting set solution.

Finding the optimal hitting set solution is NP-complete in

general. However, there exist efficient approximation algo-

rithms, e.g., the (1 + ǫ)–approximation in [39], that we can

use. Let C be the result from the hitting set algorithm. Hence,

measurement cost of the above algorithm is no more 1 + ǫ
times the optimal SAMPLINGTSPN solution.

Bounding the travel cost of the above algorithm (i.e.,

bounding the length of the TSP tour of C) is not straight-

forward. In the case of ALG1 we were able to bound the length

of the tour by first finding a TSPN tour and then adding local

detours to the grid locations. For analysis purposes, we follow

a similar strategy to construct a tour that combines ALG1 and

GRIDSAMPLE:

• Stage 0: Let X̄ be the set of all disks in X with the radius

of each disk set to rmax.

• Stage 1: Compute I = MIS(X̄). Let TC be the TSP

tour of the centers of all disks in I .

• Stage 2: Create a set system, (P,R), from the

arrangement of all disks in X . Compute C =
HITTINGSET(P,R).

• Stage 3: For each disk d ∈ I , place a grid co-centered

with d and with dimensions 6rmax × 6rmax and with

resolution rmin/
√
2.

• Stage 4: Output a TSP tour of all grid points within 2rmin

of a sampling location in C.

This algorithm, termed ALG2, is a restricted version of

GRIDSAMPLE and therefore its cost upper bounds the cost

of GRIDSAMPLE. The key component of the analysis is to

show that no more than 25|C| grid locations will be visited

in Stage 4. We further show that visiting these 25|C| grid

locations is sufficient to guarantee that all the disks are

sampled. Consequently, the measurement cost of the tour will

be no more than 25(1+ǫ) times the optimal SAMPLINGTSPN

algorithm.

The tour produced in Stage 4 visits a subset of the grid

points covered by the tour in ALG1. Consequently, the length

of the tour will be shorter than the tour in ALG1 which

we showed to be no more than O( rmax

rmin

) times the optimal

SAMPLINGTSPN cost. This yields an overall approximation

factor of O( rmax

rmin

) for our algorithm.

Let S be the set of grid locations computed in Stage 4. In

Lemma 1 we show the correctness of the algorithm by proving

that S has at least one sampling location in each input disk (not

just the larger disk). In Lemma 2 we upper bound the number

of candidate sampling locations, and in Lemma 3 we bound the

total distance traveled. Finally, these results are combined to

prove the approximation ratio of our algorithm in Theorem 1.

Lemma 1: Let S be the set of all candidate sampling

locations in ALG2. Then, for each disk in X , there exists

a point in S lying in its interior.

Proof: The set S of sampling locations is computed based

on the solution C to the hitting set problem. For any disk

in X centered at x, there exists a point p ∈ C lying in its



Fig. 4. The point p marked by a star is the output from solving a hitting set
problem. We compute grid locations G(p) (filled circles) at a distance of at
most 2rmin from p. Lemma 1 guarantees that any disk containing p having
radius greater than rmin, also contains at least one point from G(p).

interior. Since we choose sampling locations from the grid,

our algorithm may not be able to choose p. However, we show

that by including at most 25 points for each point in the hitting

set, we can hit all disks.

G(p) is the set of grid points within 2rmin of p. Instead

of sampling at p, we sample at some grid point in G(p)
(Figure 4). Let D be any disk in X that contains p. We will

show that at least one grid point, say p′ ∈ G(p), is also

contained in D. Draw a disk D2 centered at p, with radius

2rmin. Any disk of radius rmin contained completely within

D2 must also contain at least one point of G(p). Replace D
by a smaller disk, say D1, such that D1 has a radius rmin,

D1 is contained completely within D, and D1 contains p. D1

is completely contained within D2. Hence, D1 contains some

point of G(p).

Next, we will show that this point p′ is also included in S.

We have one of two cases, either the larger disk centered at x
lies in the MIS or not. If it lies in the MIS, then p′ is within

3rmax of x and we are done. If not, then the larger disk of

radius rmax intersects some other larger disk, centered at say

x′, lying in the MIS. Hence, the distance between x and x′ is

at most 2rmax, which implies that p′ is at most 3rmax away

from x′. Hence, in both cases, p′ will be in S.

Lemma 2: If N∗ is the number of samples by an optimal

algorithm for the general SAMPLINGTSPN problem and S
is the set of grid locations computed in ALG2, then |S| ≤
25(1 + ǫ)N∗.

Proof: N∗ is the minimum number of points, such that

there exists at least one point per disk in X . The set C can be

found using any constant-factor approximation for this hitting

set problem. For example, using the algorithm in [39], we

have |C| ≤ (1 + ǫ)N ∗. For each point in C, we add at most

25 points in S. Hence, |S| ≤ 25|C| ≤ 25(1 + ǫ)N ∗.

Lemma 3: Let TALG be the tour constructed by ALG2, and

T ∗ be the tour for the optimal SAMPLINGTSPN algorithm.

Then len(TALG) ≤ O
(

rmax

rmin

)

T ∗.

Proof: For ease of notation, in this proof we refer to both

a tour and its length by T , and T ∗ refers to an optimal tour.

Denote by TI and TC the TSPN tour of the MIS and TSP

tour of the center of the MIS respectively. Let n be the total

6rmax

rmin

6rmax

Fig. 5. Bounding the distance traveled by a tour that visits a 6 rmax

rmin

×6 rmax

rmin

grid centered around a disk (shown shaded) in the MIS.

number of disks in the MIS. Now

T ∗
C ≤ T ∗

I + 2nrmax (10)

≤ T ∗ + 2nrmax. (11)

The first inequality follows from the fact that a tour of the

centers can be constructed by taking a detour of at most 2rmax

for each disk from the tour of the disks. The second inequality

comes from the fact that the optimal tour is also a tour of the

disks in the MIS.

TALG consists of a TSP tour of the centers of the disks

in MIS and a tour of the grid locations within 3rmax of the

center. Using the (1+ ǫ)-approximation for the TSP tour [40]

we get,

TALG

≤ (1 + ǫ)T ∗
C + n

((

6
rmax

rmin

)

(6rmax) + 6rmax + 6
√
2rmax

)

(12)

= (1 + ǫ)T ∗
C + 36n

rmax

rmin
rmax + 6n(1 +

√
2)rmax

In Equation 12, the second term gives the distance traveled

along 6 rmax

rmin

vertical grid columns (see Figure 5). The length

of each column is 6rmax. The third term accounts for the total

distance traveled horizontally to move from one column to

next. The fourth term gives the distance traveled to go from

the center of the disk to one corner of the grid and back to

the center at the end.

Using Theorem 1 from [23], we know that the length of any

tour that visits n non-overlapping disks of radius rmax is at

least n
2 0.4786rmax. That is, T ∗ ≥ n

2 0.4786rmax. This gives,

nrmax ≤ 2
0.47T

∗.

Therefore,

TALG ≤ (1 + ǫ) (T ∗ + 2nrmax) (13)

+

(

36
rmax

rmin
+ 6 + 6

√
2

)

nrmax (14)

≤ (1 + ǫ)T ∗ +

(

36
rmax

rmin
+O(1)

)

nrmax (15)

≤ O
(

rmax

rmin

)

T ∗ (16)

Theorem 1: GRIDSAMPLE gives a valid Sampling TSPN

tour of cost O
(

rmax

rmin

)

times that of the optimal tour, where



rmax and rmin are the radii of the largest and the smallest of

the input disks, respectively.

Proof: Let C∗ be the cost of the optimal algorithm for

the general Sampling TSPN problem. Therefore, C∗ ≥ T ∗ +
N∗ ·Cg , where T ∗ is the optimal TSPN tour visiting all disks,

and N∗ is the minimum number of sample locations such that

each disk has at least one sample location.

Consider the cost of ALG2,

CALG2 = TALG + |S| · Cg, (17)

≤ O
(

rmax

rmin

)

T ∗ +O(1)N∗ · Cg, (18)

≤ O
(

rmax

rmin

)

C∗. (19)

where the first inequality comes from Lemmas 2 and 3.

Let CALG by the cost of GRIDSAMPLE. Both the length

of the tour and the number of samples in ALG2 are greater

than that of GRIDSAMPLE. Consequently, we get CALG =

O
(

rmax

rmin

)

C∗.

The running time in Stage 1 is dominated by the TSP tour,

TC . For any ǫ, TC can be computed in O(n(logn)O(ǫ−1))
using [38]. The geometric hitting set, C, in Stage 2 can be

computed in O(nO(ǫ−2)) time [39]. The total number of grid

points considered in Stage 3 is O(|C|) = O(n). The final

operation is modifying TC to visit the grid points, which takes

at most O(n) time. Thus, the running time of GRIDSAMPLE

is O(n(logn)O(ǫ−1) + nO(ǫ−2)).

C. Comparison of TSPN and GRIDSAMPLE

Figure 2(a) shows an instance where first finding a TSPN

tour and then finding sampling locations along the tour can be

arbitrarily worse than the optimal SAMPLINGTSPN solution.

Consequently, using Theorem 1 we can say that GRIDSAMPLE

outperforms TSPN in the worst-case. In order to further study

the relative performance of the two algorithms, we carried out

simulation studies. The results of the simulation are shown in

Figure 6. The sampling cost was set to tm = 10 for these

simulations.

We compared the performance of three other algorithms

with our GRIDSAMPLE. We compute the optimal hitting set by

first imposing a fine grid over all disks, and then enumerating

all possible subsets of grid points. The smallest subset of grid

points that hit each disk is chosen as the output. We eliminate

those grid points that hit the same set of disks. The TSP

strategy is the naive baseline strategy of choosing a separate

sampling location at the center of each input disk. The two

TSPN strategies first compute the TSPN tour of all the input

disks. The TSPNGreedy strategy chooses sampling locations

along the tour greedily. That is, as soon as the tour encounters

a disk not previously covered, we add a new sample at that

location and mark the disk covered. The TSPNMin strategy,

on the other hand, waits till the robot is about to leave a disk

that hasn’t previously been covered.

GRIDSAMPLE outperforms all three strategies on an av-

erage. GRIDSAMPLE can be further refined by moving each

sampling location such that it hits the same set of disks but

shortens the path.

In the next section, we show how to plan the corresponding

tour for aerial measurements.

V. UAV PLANNING: ORIENTEERING

In this section, we study the problem of obtaining aerial

measurements near PML points (Section III-A) using the UAV.

The main limitation for the UAV is the limited on-board

energy. The UAV may not be able to visit all input PML points.

Consequently, we consider the problem of maximizing the

number of PML points visited subject to the maximum battery

lifetime. We reduce this to the orienteering problem. Let

G(V,E, π, w) be a graph with weights w(u, v) on edges, and

rewards π(v) on the vertices. The objective in the orienteering

problem is to find a tour of a subset of vertices collecting

maximum reward, with the constraint that the sum of weights

of edges on the tour is less than a given budget.

Instead of using the UAV alone, we consider the scenario

where the UAV and UGV operate together, in order to increase

the number of points visited. The UAV can land on the

UGV, and the UGV can carry the UAV between deployment

locations, thus saving energy. However, the UAV still spends

some energy taking-off and landing on the UGV. We show how

to model this trade-off for the symbiotic UAV+UGV system

as an orienteering instance.

First consider the simpler case of finding the maximum

subset of points in a UAV-only system. For simplicity, let the

camera footprint be a single point for now. Let the vertices

of the graph be the set of PML points and let each vertex

have unit reward. We add an edge to G between every pair

of points with weight equal to the Euclidean distance between

the points. The budget for the UAV equals the battery lifetime

minus 2Ca to account for the single takeoff and landing. The

solution for the orienteering problem for this instance will be

a path traversing a set of PML points (with a single landing

and take-off location).

Since the edge weights are Euclidean distances, this graph

is a complete metric graph. Blum et al. [12] presented a 4-

approximation for orienteering problems on undirected metric

graphs. Applying this algorithm to the graph we constructed

above will yield a UAV tour visiting at least 1/4th of the PML

points visited by the optimal algorithm.

Now consider the case of a UAV+UGV system. The UGV

can transport the UAV between two PML locations, without

affecting the UAV’s battery life. Furthermore, since the UAV

carries a camera with a footprint of diameter C, it can

sample a point without flying directly over it. Hence, we

will also modify the set of vertices. The detailed construction

of the input graph for the orienteering problem is given in

Algorithm 2.

The following lemma shows that the resulting graph G is a

metric graph.

Lemma 4: The graph G constructed in Algorithm 2 is a

metric graph.

The proof is presented in the appendix. Since G is a

metric graph, we apply the algorithm in [12] to obtain a 4-

approximation for this problem.

Next, we study the performance of the two planning algo-

rithms through simulations based on field data.



(a) (b)

Fig. 6. Comparing four solutions for SAMPLINGTSPN: (1) GRIDSAMPLE, the algorithm proposed in this paper; (2) find the TSP tour of the centers of all
input disks (baseline); (3) find a TSPN tour using [20] and then choose sampling locations along the tour greedily; and (4) sample as (3) except the sampling
locations are chosen optimally. In (1), (2), and (4), the final tour is produced by computing a TSP tour of only the sampling locations produced. The plot
shows the average and standard deviation of the costs for 10 randomly generated instances with increasing number of randomly drawn input disks.
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(d) Final UGV+UAV Tours

Fig. 7. Path Planning Algorithm. (a) Square grid of resolution C/
√
2. The

reward for visiting each grid point (red square) is the number of PML points
(gray star) falling within the grid. (b) UAV tour found using orienteering
on the graph of grid points. For this instance, UAV budget was 500 secs
out of which 200 secs are spent traveling and 240 secs are spent for the 2
ascents/descents. (c) Sampling TSPN tour (Section IV) for the UGV. (d) Final
UGV tour including UAV take-off locations (red squares).

VI. SIMULATIONS

In the previous sections, we showed theoretical bounds on

the number of PML points selected and the distance traveled

by our algorithm with respect to optimal. We expect the

UAV+UGV system to sample more PML points as compared

to a UAV-only system with the same battery limitations. We

investigate this through simulations based on actual system

parameters and real data collected from an agricultural plot.

Algorithm 2: Creating Input Graph G.

1 Create a square grid of resolution C/
√
2 over the plane.

Each point in Xpml is associated with its nearest grid

location (Figure 7(a)). Store the number (denoted by

π(v)) of PML points associated with a grid location.

2 Let V be the set of grid vertices with at least one PML

point associated. For each v ∈ V , let π(v) be the number

of associated PML points (Figure 7(a)).

3 Build a complete undirected graph G = {V,E, π, w}. For

each edge between (u, v) ∈ V , add a weight

w(u, v) = min{d(u, v), 2Ca}. This implies there are two

types of edges between grid points: The UAV can either

use the UGV to travel paying only for the ascent/descent

(2CA) or travel directly between points paying the

distance cost (d(u, v)).

A. System Description

We present the details of the robotic system we are develop-

ing to motivate the choice of our simulation parameters. Our

UGV is a Husky A200 by Clearpath Robotics [41]. The UGV

has a typical battery life of two hours on a single charge. The

operating lifetime can be extended to over six hours easily

with additional batteries. The UGV will measure soil organic

matter as a proxy for soil N supply to the crop using a Minolta

SPAD-502 Chlorophyll meter [42].

Our UAV is a Hexa XL by MikroKopter [43]. This UAV can

operate for a maximum of 25 mins (under ideal conditions).

Deploying the UAV to approximately 100 meters height gives

the camera a 50 meter diameter coverage with a single image.

The UAV takes about 2 minutes to ascend/descend this height.

The images include multi-spectral information, such as near-

infrared reflectance, which is used to estimate the crop N



status [44].

B. Modeling

To generate realistic data, we need a generative model of

nitrogen levels and realistic values for the sampling noise for

both systems. We will briefly discuss how we obtained these

from an existing nitrogen remote sensing and soil sampling

dataset [44]. The data from [44] consists of 1375 soil measure-

ments taken manually in a 50m by 250m corn field, along with

corresponding 1m spatial resolution remote sensing images in

the green (G), red (R) and Near Infrared (NIR) portions of

the spectrum. The samples were taken along a dense uniform

coverage (see Figure 8) and provided the levels of soil Organic

Matter (OM). R and NIR are known to be inversely related to

crop N status [44].

We used OM as a proxy for the initial quantity of soil N

supplied to the crop. We modeled the UGV as taking direct

measurements of OM, corrupted by some sensor noise with

variance σ2
g , and the UAV as measuring the Normalized Differ-

ence Vegetation Index (NDVI), which is a combination of NIR

and R levels [8]. We assume the NDVI levels are corrupted

by sensor noise with variance σ2
a. The noise variances were

estimated to be σa = 0.31 and σg = .05 for our dataset, using

the following procedure.

To model the spatial patterns of the OM levels, we used GP

regression over the set of sample points and OM measurement

values. This densely-sampled GP defined the hyperparameters

which were used to generate new ground-truth N maps in our

simulations. We used the GPML Toolbox [45] for performing

the GP regression.

As part of the ground-truth GP regression, we can estimate

the sample noise at each point from the data directly (σs

in Equation 7). We used this value directly as σg , since we

assumed the robot would have the same sensing capability

as the human operators. To estimate σa, we calculated the

sample covariance between NDVI (from the hand-measured

R and NIR levels) and OM (measured directly), yielding the

2× 2 matrix,

[

σ2
OM σOM,NDVI

σNDVI,OM σ2
NDVI

]

(20)

From the above equation, we can find the variance in OM

given a measurement of NDVI, and use this as the UAV sensor

noise as,

σ2
a = σ2

OM|NDVI = σ2
NDVI −

σ2
OM,NDVI

σ2
OM

(21)

In simulations, we formed a prior estimate of OM levels

by down sampling each randomly-generated ground-truth N-

map by a factor of 20 and fitting a new GP. We randomly

generated 100 N-maps for a 600 × 400 m field. For each

randomly generated prior GP, we found the PML point set

as described in Section III using a desired labeling probability

of 0.6. The number of PML points in any instance depends

on the randomly generated map.

C. Results

We first compare the number of PML points covered by

the UAV+UGV system versus an UAV-only system. We use

the procedure described in Section V for finding the subset

of PML points visited by the UAV-only and the UAV+UGV

system, subject to the battery constraint of 25 mins. We used

the implementation from the SFO Toolbox [46] for finding

an orienteering tour, and the Concorde TSP solver [47] as a

subroutine in the Sampling TSPN algorithm implementation.

Figure 9 shows a sample run from the simulations. We

observe that the UAV-only tour is constrained to only one

part of the field, whereas the UAV+UGV system can obtain

measurements from farther away locations. This input instance

consisted of 75 potentially mislabeled points, the UAV-only

tour covers 38 points whereas the UAV+UGV tour covers 50

points. Figure 10 shows a histogram of the ratio of the points

covered by the UAV+UGV and the UAV-only tours for 100

random instances. As expected, the ratio is always greater than

1 as the UAV+UGV system is at least as good as a UAV-only

system in terms of the number of points visited. Table I shows

the effect of varying the budget on the percentage of input

PML points visited.

TABLE I
PERCENTAGE OF INPUT PML POINTS VISITED (AVG. OF 30 INSTANCES).

Budget (sec) UAV-only UAV+UGV

500 19 25
1000 36 49
1500 55 72

The UAV+UGV system can cover points that are spread

across the field. Intuitively, if the measurements are dis-

tributed across the field, we expect the resulting map (after

incorporating the measurements) to have fewer mislabeled

points than if all measurements are nearby. After calculating

the desired UAV/UGV tours, random measurements for the

sensors were sampled directly from OM values given the dense

(ground truth) GP. We added noise to the measurements using

estimated variances σa = 0.31 and σg = 0.5 as described in

Section VI-B. These values were then used to update the prior

GP, which was then used to find the posterior PML points. We

observe the posterior PML points in Figures 9(c) & 9(d). For

a fair comparison, we add UGV measurements for each PML

point visited by a UAV-only tour, in obtaining the updated N

level map.

Figure 10(b) shows a histogram of the ratio of the posterior

PML points with a UAV+UGV system and a UAV-only

system. Since the number of PML points depend on both the

variance, and the estimated N(x) values, occasionally there

are instances when the number of posterior PML points with

UAV-only system are lesser than that of UAV+UGV system.

However, as we can observe in Figure 10(b) the UAV+UGV

system often outperforms the UAV only system in terms of

number of posterior PML points.

VII. FIELD EXPERIMENTS

We conducted preliminary field experiments with the system

we are developing. Our current system capabilities include
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Fig. 8. Soil organic matter data set from [44]. Dense sampling was collected by hand (black crosses) and used to train a Gaussian Process. The resulting
estimate of nitrogen levels is shown as the contour map. From this data set we learn the sensor noise values σa and σg , as well as model the underlying soil
organic matter for larger simulations (Figure best viewed in color).
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(b) UAV+UGV tour visiting 50
PML points
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(c) 35 Posterior PML points with
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Fig. 9. Sample simulation instance. (a) & (b) shows the tours found using a
UAV-only and UAV+UGV system. The input consists of 75 PML points. The
UAV+UGV tour consists of 6 subtours. (c) & (d) shows the PML points
found in the updated N level map after incorporating aerial and ground
measurements. The UGV allows the UAV to transport to farther locations
in the plot which is reflected in fewer posterior PML points.
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Fig. 10. Histograms of the ratio of (a) number of PML points visited, and
(b) number of posterior PML points generated after updating the N map with
simulated measurements for UAV+UGV system and a UAV-only system, for
100 random instances. Both systems are given an equal budget of 25 minutes.

data collection with an autonomous UAV (Figure 11). The

experiments were conducted in a corn plot at Janesville, MN,

U.S.A. The corn plot is a 122m × 61m site for studying

the effect of fertilizer treatments on nitrogen stress. The UAV

Fig. 11. Preliminary field experiment with a UAV carrying a multi-spectral
camera in a corn plot in Janesville, MN, U.S.A. Visible and near-infrared
images shown were obtained from an altitude of 30m during the experiment.

was fitted with a multi-spectral camera from Tetracam [48].

Figure 11 shows the visible and NIR images obtained from

30m altitude. A camera footprint of diameter C = 30m was

determined empirically for a flying altitude of 30m.

A prior estimate was built using dipole data as a proxy

for the nitrogen level map. The dipole data consists of

ground measurements of electrical conductivity of the soil.

The conductivity, in turn, depends on the land elevation, soil

moisture, and soil texture. Elevation changes lead to water run-

off leading to changes in the nitrogen levels due to leaching.

The prior estimate built using the dipole data is shown in

Figure 12(a), and the elevation map of the plot is shown in

Figure 12(b).
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Fig. 12. (a) Prior map built using dipole measurements as proxy for
nitrogen levels. Dipole measurements of the soil conductivity depend on the
elevation and soil moisture and texture, which in turn affect nitrogen levels.
(b) Elevation map of the test site. (Figures best viewed in color)



Each point in the prior map was labeled as either high

or low, using the average prior map value as the threshold.

The desired maximum probability of mislabeling was set to

Pd = 0.45. 169 PML points were identified based on this

(Figure 13(a)). These points were partitioned into a grid of

resolution C/
√
2. The orienteering algorithm was run on the

graph constructed using the grid. All the tours were computed

considering a nominal UAV speed of 4m/s. The waypoint

following controller on-board the UAV was programmed to

maintain this speed. The typical battery lifetime of the UAV at

this speed was observed to be approximately 600 s. The UAV

can potentially cover all the input PML points in 600 s. Since

the goal of this experiment was to demonstrate the proof-of-

concept implementation for a larger setup, we restricted the

battery lifetime to 200 s.
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Fig. 13. (a) 169 PML points were found after classifying the prior map into
two labels. (b) The camera footprint along a UAV-only tour covered only 102
PML points (marked by larger star, in red) with a maximum budget of 200 s.
(c) UAV+UGV tour consisted of two paths, and covered 134 of the PML
points with the same budget. (d) GPS coordinates of the UAV for executing
the tours in (c).

Figure 13(c) shows the UAV tour found for a UAV-only

system. The number of points visited by the UAV increase

from 102 with a UAV-only system to 134, using a UAV+UGV

system. Figure 13(b) shows two deployments computed for a

UAV+UGV system. Figure 13(d) shows the GPS coordinates

of the UAV during actual execution of the two deployments

given in Figure 13(b). We programmed the UAV to take-off

and land from the same location at one of the corners of

the plot where we were stationed (instead of the locations

computed by the algorithm) for safety purposes. Our ongoing

work is focused on implementing the UGV system.

VIII. CONCLUSION

In this paper, we studied two informative path planning

problems motivated by the use of robots in precision agricul-

ture. Precision agriculture uses data from ground and aerial

sensors in order to estimate and predict the status of crops.

Obtaining a soil measurement from a ground robot requires

spending some time. With this as motivation, we introduced

a new planning problem, termed as the SAMPLINGTSPN

problem, which penalizes the time spent in traveling and

the time spent for obtaining measurements. We presented an

O
(

rmax

rmin

)

approximation algorithm where rmin and rmax are

the minimum and maximum radius of input disks. Aerial

images can be obtained instantaneously; however, small UAVs

have limited on-board energy. We studied the problem of

maximizing the number of points visited by the UAV, subject

to its maximum battery lifetime. Unlike traditional approaches,

our algorithm takes into consideration the situation where the

UAV can land on the UGV and thus be carried between points

without expending energy.

In order to execute the algorithms presented in this paper,

additional capabilities such as soil sampling and autonomous

landing are necessary, which are part of our ongoing work.

Future work includes studying the online version of the

planning problems. In the online version, the N level map is

updated after each measurement. New PML points are likely

to appear during sampling tours. This presents an interesting

trade-off between using the slower UGV measurements to

handle the new PML points, or using part of the UAV budget

to cover a large number of points simultaneously.

ACKNOWLEDGMENT

This work is supported by NSF Awards #1111638,

#0917676, and #1566247 and a grant from MnDrive RSAM

initiative. We thank Roman Ripp, Andrew Scoobie, and Daniel

Kaiser for their help with the field experiments.

REFERENCES

[1] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor Planning
for a Symbiotic UAV and UGV System for Precision Agriculture,”
in Proc. International Conference on Intelligent Robots and Systems

(IROS), 2013.

[2] A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein, “Nonmyopic
informative path planning in spatio-temporal models,” in AAAI, vol. 10,
no. 4, 2007, pp. 16–7.

[3] S. T. Jawaid and S. L. Smith, “Informative path planning as a maximum
traveling salesman problem with submodular rewards,” Discrete Applied

Mathematics, vol. 186, pp. 112–127, 2015.

[4] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in Gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” The Journal of Machine Learning Research, vol. 9, pp. 235–284,
2008.

[5] N. Cao, K. H. Low, and J. M. Dolan, “Multi-robot informative path
planning for active sensing of environmental phenomena: A tale of two
algorithms,” in Proceedings of the 2013 international conference on

Autonomous agents and multi-agent systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2013, pp. 7–14.

[6] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” vol. 34, no. 2, 2009, p. 707.

[7] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and
its application to informative path planning for persistent monitoring
tasks,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ

International Conference on. IEEE, 2014, pp. 342–349.



[8] D. J. Mulla, “Twenty five years of remote sensing in precision agri-
culture: Key advances and remaining knowledge gaps,” Biosystems

Engineering, vol. 114, no. 4, pp. 358 – 371, 2013, special Issue: Sensing
Technologies for Sustainable Agriculture.

[9] D. Mulla, “Mapping and managing spatial patterns in soil fertility and
crop yield,” in Soil Specific Crop Management. American Society of
Agronomy, 1993, pp. 15–26.

[10] G. W. Randall and D. J. Mulla, “Nitrate nitrogen in surface waters as
influenced by climatic conditions and agricultural practices,” Journal of

Environmental Quality, vol. 30, no. 2, pp. 337–344, 2001.
[11] H. Choset, “Coverage of known spaces: The boustrophedon cellular

decomposition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.
[12] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and

M. Minkoff, “Approximation algorithms for orienteering and discounted-
reward tsp,” SIAM Journal on Computing, vol. 37, no. 2, pp. 653–670,
2007.

[13] K. H. Low, J. Chen, J. M. Dolan, S. Chien, and D. R. Thompson,
“Decentralized active robotic exploration and mapping for probabilistic
field classification in environmental sensing,” in Proceedings of the

11th International Conference on Autonomous Agents and Multiagent

Systems-Volume 1, 2012, pp. 105–112.
[14] B. Zhang and G. S. Sukhatme, “Adaptive Sampling for Estimating a

Scalar Field using a Robotic Boat and a Sensor Network,” Proceedings

2007 IEEE International Conference on Robotics and Automation, pp.
3673–3680, Apr. 2007.

[15] D. Song, C.-Y. Kim, and J. Yi, “Simultaneous localization of multiple
unknown and transient radio sources using a mobile robot,” Robotics,

IEEE Transactions on, vol. 28, no. 3, pp. 668–680, 2012.
[16] M. Otte, N. Correll, and E. Frazzoli, “Navigation with foraging,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 3150–3157.

[17] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks:
Monitoring and sweeping in changing environments,” Robotics, IEEE

Transactions on, vol. 28, no. 2, pp. 410–426, 2012.
[18] J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events with

stochastic arrivals at multiple stations,” Robotics, IEEE Transactions on,
vol. 31, no. 3, pp. 521–535, June 2015.

[19] A. Singh, A. Krause, and W. J. Kaiser, “Nonmyopic Adaptive Informa-
tive Path Planning for Multiple Robots,” International Joint Conference

on Artificial Intelligence, pp. 1843–1850, 2008.
[20] A. Dumitrescu and J. S. Mitchell, “Approximation algorithms for tsp

with neighborhoods in the plane,” Journal of Algorithms, vol. 48, no. 1,
pp. 135–159, 2003.

[21] P. Kamousi and S. Suri, “Euclidean traveling salesman tours through
stochastic neighborhoods,” in Algorithms and Computation. Springer,
2013, pp. 644–654.

[22] D. Bhadauria, O. Tekdas, and V. Isler, “Robotic data mules for collecting
data over sparse sensor fields,” Journal of Field Robotics, vol. 28, no. 3,
pp. 388–404, 2011.

[23] O. Tekdas, D. Bhadauria, and V. Isler, “Efficient data collection from
wireless nodes under the two-ring communication model,” The Interna-

tional Journal of Robotics Research, vol. 31, no. 6, pp. 774–784, 2012.
[24] G. Hollinger, S. Choudhary, P. Qarabaqi, C. Murphy, U. Mitra, G. S.

Sukhatme, M. Stojanovic, H. Singh, F. Hover, et al., “Underwater data
collection using robotic sensor networks,” Selected Areas in Communi-

cations, IEEE Journal on, vol. 30, no. 5, pp. 899–911, 2012.
[25] R. Sugihara and R. K. Gupta, “Optimal speed control of mobile

node for data collection in sensor networks,” Mobile Computing, IEEE

Transactions on, vol. 9, no. 1, pp. 127–139, 2010.
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APPENDIX

PROOF FOR LEMMA 4

Proof: We verify G is a metric graph. Consider a triple of

vertices u, v, w. We know w(u, v), w(v, w), w(w, u) ≤ 2Ca. It

is easy to see the triangle inequality holds when two or three

edges have weights equal to 2Ca. Consider the case when

only one edge has weight equal to 2Ca, say w(u, v) = 2Ca.

Now, w(v, w)+w(w, u) = d(v, w)+d(w, u) ≥ d(u, v). Since

w(u, v) = min{2Ca, d(u, v)} = 2Ca, we have d(u, v) ≥ 2Ca.

Hence, w(v, w) + w(w, u) ≥ w(u, v). And since w(u, v) =
2Ca and w(v, w), w(w, u) < 2Ca, w(u, v) + w(w, u) ≥
w(v, w) and w(u, v)+w(v, w) ≥ w(w, u). For the case when

all three edges have weights less than 2Ca, the weights are

equal to Euclidean distances. Hence, weights satisfy triangle

inequality in addition to symmetry, identity and non-negativity.

Hence, the graph constructed above is a complete metric graph.
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