
Starling: Containerisation Architecture
for Scalable Local Development, Deployment and

Testing of Multi-UAV Systems
Mickey Li

Bristol Robotics Laboratory
University of Bristol

Bristol, UK
Email: mickey.li@bristol.ac.uk

Robert Clarke
Bristol Robotics Laboratory

University of Bristol
Bristol, UK

Email: robert.clarke@bristol.ac.uk

Arthur Richards
Bristol Robotics Laboratory

University of Bristol
Bristol, UK

Email: arthur.richards@bristol.ac.uk

Abstract—A major challenge of UAV research is facilitating the
local development, deployment and testing of multi-UAV systems.
Inspired by cloud computing, this work proposes Starling, a full-
stack, compositional, containerised UAV infrastructure utilising
ROS2, Gazebo, PX4, Docker and Kubernetes. By modelling
individual UAVs as nodes in a compute cluster, our architecture
is natively scalable, fault tolerant and allows for the flexible
deployment of custom applications in both simulation and in
reality. These technologies allow us to facilitate reproducible
research while provide a lower barrier of entry for potential
users, as well as the reuse of flight hardware for multiple
projects. A multi-UAV path planning case study is presented to
demonstrate the streamlined workflow of developing a controller
from simulation to reality.

I. INTRODUCTION

A key challenge in unmanned aerial vehicle (UAV) re-
search is the ability to develop, deploy and test algorithms.
This requires the development and maintenance of both an
experimental platform, and realistic simulation environment.
As applications become more complex with multiple UAVs,
building bespoke solutions is clearly not sustainable - often
becoming inflexible, incomprehensible and, importantly, dif-
ficult to reuse, with any level of confidence. This becomes
especially hard when coupled with UAV hardware, where
many operational details are omitted, making reproducibility
all but impossible. Combined with poor documentation, it
becomes an exceptionally large barrier for researchers who
wish to perform real world experiments.

Notably, many of these problems are shared by software
engineering in general. One solution is the use of Docker [4].
Docker is an example of a software containerisation system
which can be thought of as lightweight virtual machines which
only emulate the user’s file system [1]. In particular it allows
the encapsulation of the entire runtime environment of an ap-
plication into an ‘executable’ image which can be downloaded
and ran locally on any OS by any users in a modular fashion.
While containers can be ran locally, traditionally in cloud-
computing, they are often passed onto a container orchestrator,
such as Kubernetes [12] in order to automatically deploy
containers to run on physical server nodes within a cluster.

Inspired by this paradigm, we present Starling - a full-
stack, compositional, containerised UAV infrastructure which
models individual UAVs as server nodes within a cluster1.
A development workflow is introduced where a user’s ROS2
compatible UAV application is first developed against simu-
lation containers, and then against a test harness which fully
emulates the real system down to the networking and deploy-
ment dynamics. Finally, the exact same container image can be
deployed to real UAVs. This allows us to exploit the benefits
of cloud technology which include networking, scalability,
failure recovery, hotswapping as well as make use of the
numerous developed tools. This will allow us to facilitate
reproducible research while reducing the barrier of entry for
users, as well as allow the reuse of flight hardware for multiple
projects. A multi-UAV path planning case study is presented
to demonstrate the streamlined workflow of developing a
controller from simulation to reality.

II. BACKGROUND AND RELATED WORK

The UAVs are assumed to possess an autopilot and a
companion computer. In this work we primarily use the PX4
firmware stack[15] for the autopilot, along with its software
in the loop (SITL) simulation. The autopilot contains the
high frequency control loops required to keep a UAV fly-
ing. For communication, the Robot Operating System (ROS)
middleware layer is used, specifically ROS2 Foxy. Compared
to ROS1, ROS2 has no master node, allowing for a mini-
mal configuration decentralised approach. It also changes the
underlying communications to use DDS standards allowing
for the setting of best-effort quality-of-service policies. DDS
also supports automated discovery which allows us to make
use of Kubernetes’ failure recovery and hotswapping [14].
The Mavros [6] node provides a ROS topic interface to the
autopilot using the MAVLINK protocol standard. Gazebo [11]
is a popular ROS compatible physics engine frequently used
for simulation.

1Open Source on github: https://github.com/StarlingUAS/ProjectStarling

https://github.com/StarlingUAS/ProjectStarling


The development of a reusable full-stack testbed for UAV
research is a challenging task. Stanford Starmac [7], MIT
Raven [21] and UPenn Grasp[16] were the first to develop and
successfully utilise Multi-UAV testbeds for research, but it is
difficult to replicate these systems elsewhere, a problem our
system attempts to solve. More recently, both Luis Sanchez-
Lopez et al. [13] and Baca et al. [3] developed a full stack
UAV system, defining a workflow from simulation to outdoor
flight. Their system utilises ROS1 to facilitate a modular
control architecture. Whilst the former uses a custom control
stack, the latter asks users then develop controllers which can
be manually run in either simulation on one or more UAVs
running the PX4 [15] firmware, or through the Gazebo physics
simulator [11] running the PX4 software in the loop (SITL)
simulated autopilot. The latter system has been extensively
tested and extended to numerous applications [18, 2]. They
both aim to solve similar challenges to us. However, our sys-
tem additionally benefits from the inherent scalability, failure
recovery, UAV hotswapping and hardware agnostic ability of
cloud distributed systems.

There also exist a number of works applying container-
isation to UAV systems. For example, OpenUAV [19] en-
capsulates the entirety of a drone simulation (ROS1/ PX4/
Gazebo) into a single container to provide a web-based sim-
ulation testbed. We take a more compositional approach in
comparison, in order to support real flight, but are inspired
by their focus on accessibility. A few works then consider the
system architecture in implementing UAVs as a service [8, 17].
Both papers propose software architectures for safely planning,
organising and controlling UAVs from the cloud. Containeri-
sation is used for the cloud applications, but are not used for
deployment on the drones themselves. Both papers are also
purely theoretical and have no physical implementation. This
work has also been inspired by recent work in the field of
IoT Edge Computation [10], as well as recent work applying
a similar concept to ground robots for an industrial swarm
testbed [9] and autonomous cars [20].

III. THE STARLING SYSTEM

A. System Requirements

The system was designed to the following requirements:

• Support experimentation with Single and Multi-UAV ap-
plications, with a flexible and reusable set of vehicles

• Support both Offboard (centralised) and Onboard (decen-
tralised) control of vehicles.

• Support the MAVLink Protocol (including via a ground-
station connection) and ROS interfaces for vehicle con-
trol.

• Require minimal extraneous user configurations.
• Provide a defined workflow from simulation to reality.
• Provide one-click deployment for simulation and reality.
• Usable by researchers with basic programming experi-

ence.

Fig. 1: Starling system overview with physical and simulated
UAVs. The small boxes all represent Starling containers de-
ployed by the cluster. The user only implements an onboard
or offboard ROS2 controller which can then be deployed. The
preconfigured Mavros container acts as the interface between
user code and either a simulated or real PX4 drone autopilot.
The UAVs used within our system are the Coex Clover (left)
and QAV250 (right).

B. System Architecture

The core Starling module facilitates the communication
between the user application and the UAV autopilot in simu-
lation or reality. Internally, a Mavros node is used to translate
between ROS, and MAVLINK for the autopilot. On one side,
this module can be configured to support simulated or hard-
ware autopilot firmwares. On the other, Mavros provides an
interface through a consistent set of ROS topics, through which
a user application can interact with the vehicle. This core
module is packaged up in the starling-mavros Docker
image2. The image is essentially a wrapper around the Mavros
package along with a number of useful features: (1) Automated
Initalisation of network connections to simulation or reality (2)
Automated ROS Namespacing based on MAVLink system ID
for ROS2 discovery (3) ROS1 to ROS2 Bridge to run ROS1
Mavros and its parameter bridge to specify a subset of topics
to be forwarded to ROS23, and (4) Safety Elements such as
an electronic stop (e-stop) node and topic.

Figure 1 shows an example multi-drone setup including
simulation within the Starling system. Observe that the Mavros
container is deployed to every vehicle (real and simulated).
Kubernetes includes a number of different deployment types.
In particular, the ‘DaemonSet’ type4 automatically deploys
containers to all nodes on the cluster matching a pre-specified
label. In a similar manner, a user can then develop their own

2https://github.com/StarlingUAS/ProjectStarling/tree/master/system/mavros
3https://github.com/ros2/ros1 bridge needed until ROS2 mavros is released
4https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

https://github.com/StarlingUAS/ProjectStarling/tree/master/system/mavros
https://github.com/ros2/ros1_bridge
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/


Create/Modify 
Controller

Of Experiment

If not safe or performant, modify controller

Single UAV
Local Test

In Simula�on

Mul� UAV
Integra�on Test 

Locally 
In Simula�on

Deploy to 
Single/Mul�ple

Real UAVs

Fig. 2: The proposed workflow for Starling. It all revolves
around developing not only the code, but the complete con-
tainer. That same container can then be used to test in
environments which get successively more realistic.

container using a Mavros compatible ROS controller, to also
be deployed with its own DaemonSet against real vehicles or
simulation. Through this feature, this work proposes a devel-
opment workflow described by Figure 2. All containers are
open source and stored in the Docker Hub online repository5

to allow immediate running and access.

C. Simulation

Drawing from the ‘Test Like You Fly’ paradigm developed
by NASA[5], Starling attempts to minimise the changes from
development to deployment. Therefore all user controllers
must be locally tested in as realistic an environment as
possible, not only in physics, but in system architecture,
networking, user interaction, communications, etc. The use of
cloud technologies allows us to meet these requirements.

The simulation is formed of two core elements. The first
is the autopilot firmware’s software in the loop (SITL) which
emulates the autopilot. Importantly, to the Mavros container,
nothing has changed whether running against SITL or a real
autopilot. This general approach allows us to support both
PX4 and Ardupilot SITL, with a container for running each.
The second element is a container which contains the physics
simulation and visualisation. This work utilises Gazebo [11],
but any simulator supported by the SITLs could be used.
Gazebo was chosen as it provides the GZWeb web-based
frontend6, providing an easily accessible GUI from both
Linux- and Windows-based systems. The one or more SITL
containers automatically connect to Gazebo for physics, and
to spawn their vehicles for visualisation.

To avoid having the user manually run all of these contain-
ers, we use the Docker-Compose tool 7 to provide pre-made
simulator configurations. Running a configuration will locally
start up Mavros, SITL, Gazebo and other containers, which the
user can then test their own controller against. This provides
a quick development cycle and a reproducible environment,
alleviating oft-quoted frustrations with robotics development.

If the user intends to fly in reality, the user is then en-
couraged to test within the Starling full test harness. This test
harness not only provides the simulation, but also provides
a virtual version of the real system architecture, complete
with virtual drone nodes, identical networking models and
deployment dynamics. This is achieved with Kubernetes in
Docker (KinD)8 which runs a simulated Kubernetes cluster

5https://hub.docker.com/orgs/uobflightlabstarling
6https://github.com/osrf/gzweb
7https://docs.docker.com/compose/
8https://kind.sigs.k8s.io/

within a set of Docker containers. KinD runs a container for
each simulated drone which then internally runs the Starling
container stack. This allows for the testing of deployment
scripts and networking compatibility before real flight. To sim-
plify user experience, the Mumuration command line interface
(CLI)9 has been developed for using Starling.

D. Real Flight

Once performance is satisfactory in simulation, the con-
troller can be flown in reality. For our purposes, this will be
indoors, but the same setup can be deployed anywhere, includ-
ing outdoors. We operate multiple Coex Clover quadcopter
UAVs 10 which run PX4 on a custom PixRacer-like autopilot
with a 2GB Raspberry Pi 4B as a companion computer.
A central server runs the lighter K3S Kubernetes variant11

which is designed for low powered electronics. Each Pi runs
a preconfigured Ubuntu OS and automatically connects to the
server as a K3S node over WiFi upon startup.

Each vehicle contains a configuration file specifying its
vehicle ID and other identifying variables. On deployment,
this file is mounted into each of the containers, along with
hardware inputs and serial links if needed. The Mavros
container uses this file to ensure its configurations align to
flying on a real vehicle. A Vicon and a hardware container
are also automatically deployed via DaemonSet. The former
communicates the real vehicle position to the drone using the
arena wide Vicon motion capture cameras. The latter is used to
interface with the sensors and LEDs on the vehicle. Through
the use of Kubernetes, these containers are automatically
deployed onto the vehicle upon startup, negating the need for
any user setup. In an identical manner to testing within KinD,
the user’s deployment file is deployed to the cluster, with the
individual nodes downloading user containers either from a
local repository or from the internet.

IV. MULTI-DRONE PATH FOLLOWING USE CASE

In order to demonstrate Starling in action, the development
of a synchronous multi-drone path follower is discussed with
results shown. Many of our multi-drone path planning projects
require validation on real vehicles. However open loop path
following is often not sufficient as real vehicles lag behind
planned times, negating offline planned vehicle avoidance. A
simple method is developed for synchronisation by communi-
cating vehicle delays to a central monitor. This project is open
source12 for readers to try themselves.

A. Synchronous Path Following

For n UAVs, a path plan Ψ = {ψ1, .., ψn}, consists of UAV
trajectories ψi = [(tik, p

i
k)]k specifying a set of coordinates p

to visit at time t. During execution, vehicle i may be delayed
by dik upon arrival of its kth task, tik offset by the vehicle’s

9https://github.com/StarlingUAS/Murmuration
10https://coex.tech/clover
11https://k3s.io/
12https://github.com/StarlingUAS/synchronous position trajectory controller

https://hub.docker.com/orgs/uobflightlabstarling
https://github.com/osrf/gzweb
https://docs.docker.com/compose/
https://kind.sigs.k8s.io/
https://github.com/StarlingUAS/Murmuration
https://coex.tech/clover
https://k3s.io/
https://github.com/StarlingUAS/synchronous_position_trajectory_controller


Fig. 3: Workflow for developing the multi-drone path planner. Left: Development in simulated KinD test harness. Middle:
Testing on real Clover drones. Right: The final traversed paths in solid, with plan in dashed. A UAV per colour. Marked points
are vehicle location at a given time. Synchronisation in effect as UAVs are not colliding.

previous cumulative delay. This delay is broadcast to all other
vehicles.

Approximate synchronisation, defined as the transit times
between non-delayed tasks, is approximately equal to the
original planned transit times between tasks. When a vehicle
reaches a task it will wait stationary for wi

k = maxi′(d
i′

k )−dik
for the delayed drones to catch up. If the drone itself is late, it
can be seen that it will incur no delay (i.e. has maximum delay
over all drones) unless another UAV is even more delayed. It
is assumed that no vehicle will be assigned more than one
task during the transit of another. An analytical proof is out
of scope of this report, but the method is validated in practice.

B. Development

The first step was to construct a valid Starling project.
This involves constructing a Docker container using a Docker-
file which inherits from a starling-controller-base
container. This base container includes the core dependencies
(ROS2 and Mavros) required by a user controller.

From requirements, 3 differing packages are implemented in
accordance with ROS2 practices. First, the trajectory follower
node was implemented in C++ and included a state machine
to provide takeoff, landing and safety monitoring in the case
of user defined mission abort. The following itself was a linear
interpolator between mission points, which then sent position
setpoints to Mavros for the drone to follow. If the vehicle
arrives late at its location, it publishes a NotifyDelay
message to the monitor. Secondly, the centralised synchroni-
sation monitor is a Python node which dynamically inspects
the current list of topics for live UAVs. On receipt of a
delay message, it will forward the delay via publishing a
NotifyPause message to all other vehicles. On receipt,
the follower updates its internal state with the other vehicles’
delay.

Once implemented, the first step was to test the container
against a local Docker-Compose configuration. This allowed
for the identification of syntax and simple logical errors when
running with a single drone. The ability to only restart the
controller on each code update allows for efficient devel-
opment. Following that, a Kubernetes deployment file was
created to test deployment to the KinD test harness with
multiple vehicles. This allowed for the debugging of the

Delay dik Wait wi
k Arrival TransitTask 1 2 1 2 1 2 1 2

1-2 5.9 0.1 0 0 26 20 20 19.9
2-3 0.9 0.3 0 5.6 47 40 20.1 19.6
3-4 1.6 0.1 0 0.8 68 66 19.4 20.3

TABLE I: Shows the relevant times for 2 of the 3 UAVs for
the first four tasks. Planned task transitions are 20s. After
offsetting (20.3 = 66 − 40 − 5.6 − 0.1), it can be seen that
corrected transit times are all approximately 20s.

synchronisation mechanism through observation on a discrete
time trajectories. Any changes only require a rebuild and
redeploy which is of minimal hassle with the CLI. Once
confident in its performance in simulation, the exact same
deployment file was deployed within the flight arena on 3
Clover drones. Figure 3 shows the workflow in action, with
Table I demonstrating approximate synchronisation. For a full
demonstration, please refer to the companion video13.

V. CONCLUSION

This work proposes Starling, a full-stack, compositional,
containerised UAV infrastructure which addresses a number
of the core challenges in UAV research. Namely, the ability
to develop, deploy and test algorithms in a reliable and
reproducible manner in both local simulation and on UAVs
in reality. In addition it does so in a manner which both
reduces the barrier to entry for potential researchers wishing to
perform real world experiments, but also allows for the reuse
of hardware platforms for multiple projects.

There is a lot of future scope for Starling, including better
user interfaces and GUIs to reduce the barrier to entry further
and supporting other robotic systems such as ground vehicles
and automated cameras. It would also be desirable to port
Starling outside to validate the use of containerisation more
broadly in general UAV applications.

ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) iCASE with Toshiba Re-
search Europe Ltd, CASCADE Programme Grant EP/R009953/1 and
FARSCOPE Centre of Doctoral Training at the Bristol Robotics
Laboratory. The authors would like to thank all contributors to ROS,
Mavros and PX4, all of which have enabled this work.

13Demonstration Video: https://youtu.be/73dadxUsbxA

https://youtu.be/73dadxUsbxA


REFERENCES

[1] Docker: lightweight Linux containers for consistent develop-
ment and deployment: Linux Journal: Vol 2014, No 239. URL
https://dl.acm.org/doi/10.5555/2600239.2600241.

[2] Tomas Baca, Robert Penicka, Petr Stepan, Matej Petrlik, Vojtech
Spurny, Daniel Hert, and Martin Saska. Autonomous Coopera-
tive Wall Building by a Team of Unmanned Aerial Vehicles in
the MBZIRC 2020 Competition. 12 2020. doi: 10.48550/arxiv.
2012.05946. URL https://arxiv.org/abs/2012.05946v1.

[3] Tomas Baca, Matej Petrlik, Matous Vrba, Vojtech Spurny,
Robert Penicka, Daniel Hert, and Martin Saska. The MRS UAV
System: Pushing the Frontiers of Reproducible Research, Real-
world Deployment, and Education with Autonomous Unmanned
Aerial Vehicles. Journal of Intelligent & Robotic Systems
2021 102:1, 102(1):1–28, 4 2021. ISSN 1573-0409. doi:
10.1007/S10846-021-01383-5. URL https://link.springer.com/
article/10.1007/s10846-021-01383-5.

[4] Carl Boettiger. An introduction to Docker for reproducible
research. ACM SIGOPS Operating Systems Review, 49(1):71–
79, 1 2015. ISSN 01635980. doi: 10.1145/2723872.2723882.
URL https://dl.acm.org/doi/abs/10.1145/2723872.2723882.

[5] A.W. Bucher. Test Like You Fly [spacecraft]. pages 7–3327,
11 2002. doi: 10.1109/AERO.2001.931408.

[6] Vladimir Ermakov. mavlink/mavros: MAVLink to ROS gateway
with proxy for Ground Control Station, 2022. URL https://
github.com/mavlink/mavros.

[7] Gabe Hoffmann, Dev Gorur Rajnarayan, Steven L. Waslander,
David Dostal, Jung Soon Jang, and Claire J. Tomlin. The Stan-
ford Testbed of Autonomous Rotorcraft for Multi Agent Control
(STARMAC). AIAA/IEEE Digital Avionics Systems Conference
- Proceedings, 2, 2004. doi: 10.1109/DASC.2004.1390847.

[8] Chen Hong and Dianxi Shi. A Cloud-based Control System
Architecture for Multi-UAV. Proceedings of the 3rd Inter-
national Conference on Robotics, Control and Automation -
ICRCA ’18, 2018. doi: 10.1145/3265639. URL https://doi.org/
10.1145/3265639.3265652.

[9] Simon Jones, Emma Milner, Mahesh Sooriyabandara, and
Sabine Hauert. DOTS: An Open Testbed for Industrial Swarm
Robotic Solutions. 3 2022. doi: 10.48550/arxiv.2203.13809.
URL https://arxiv.org/abs/2203.13809v1.

[10] Paridhika Kayal. Kubernetes in Fog Computing: Feasibility
Demonstration, Limitations and Improvement Scope : Invited
Paper. In 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT), pages 1–6. IEEE, 6 2020. ISBN 978-1-7281-5503-
6. doi: 10.1109/WF-IoT48130.2020.9221340. URL https:
//ieeexplore.ieee.org/document/9221340/.

[11] Nathan Koenig and Andrew Howard. Design and use paradigms
for Gazebo, an open-source multi-robot simulator. 2004
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 3:2149–2154, 2004. doi: 10.1109/IROS.2004.
1389727.

[12] Kubernetes. Kubernetes Documentation — Kubernetes, 2022.
URL https://kubernetes.io/docs/home/.

[13] Jose Luis Sanchez-Lopez, Martin Molina, Hriday Bavle, Carlos
Sampedro, Ramón A Suárez Fernández, Pascual Campoy, J L
Sanchez-Lopez, H Bavle, · C Sampedro, R A Suárez Fernández,
· P Campoy, P Campoy, M Molina, · M Molina, and · H
Bavle. A Multi-Layered Component-Based Approach for
the Development of Aerial Robotic Systems: The Aerostack
Framework. Journal of Intelligent & Robotic Systems 2017
88:2, 88(2):683–709, 5 2017. ISSN 1573-0409. doi: 10.1007/
S10846-017-0551-4. URL https://link.springer.com/article/10.
1007/s10846-017-0551-4.

[14] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring
the performance of ROS2. Proceedings of the 13th International
Conference on Embedded Software, EMSOFT 2016, 10 2016.

doi: 10.1145/2968478.2968502. URL http://dx.doi.org/10.1145/
2968478.2968502.

[15] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4:
A node-based multithreaded open source robotics framework
for deeply embedded platforms. Proceedings - IEEE Inter-
national Conference on Robotics and Automation, 2015-June
(June):6235–6240, 6 2015. ISSN 10504729. doi: 10.1109/
ICRA.2015.7140074.

[16] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay
Kumar. The GRASP multiple micro-UAV testbed. IEEE
Robotics and Automation Magazine, 17(3):56–65, 9 2010. ISSN
10709932. doi: 10.1109/MRA.2010.937855.

[17] Jerico Moeyersons, Martijn Gevaert, Karl-Erik Réculé, Bruno
Volckaert, and Filip De Turck. UAVs-as-a-Service: Cloud-
based Remote Application Management for Drones; UAVs-as-
a-Service: Cloud-based Remote Application Management for
Drones. 2021. ISBN 9783903176324.

[18] Martin Saska, Daniel Hert, Tomas Baca, Vit Kratky, and Tiago
Nascimento. Formation control of unmanned micro aerial
vehicles for straitened environments. Autonomous Robots,
44(6):991–1008, 7 2020. ISSN 15737527. doi: 10.1007/
S10514-020-09913-0/FIGURES/20. URL https://link.springer.
com/article/10.1007/s10514-020-09913-0.

[19] Matt Schmittle, Anna Lukina, Lukas Vacek, Jnaneshwar Das,
Christopher P. Buskirk, Stephen Rees, Janos Sztipanovits, Radu
Grosu, and Vijay Kumar. OpenUAV: A UAV Testbed for the
CPS and Robotics Community. Proceedings - 9th ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS
2018, pages 130–139, 8 2018. doi: 10.1109/ICCPS.2018.00021.

[20] Jacopo Tani, Liam Paull, Maria T. Zuber, Daniela Rus, Jonathan
How, John Leonard, and Andrea Censi. Duckietown: An Inno-
vative Way to Teach Autonomy. Advances in Intelligent Systems
and Computing, 560:104–121, 2017. ISSN 21945357. doi:
10.1007/978-3-319-55553-9{\ }8. URL https://link.springer.
com/chapter/10.1007/978-3-319-55553-9 8.

[21] Mario Valenti, Brett Bethke, Gaston Fiore, Jonathan P. How,
and Eric Feron. Indoor multi-vehicle flight test bed for fault
detection, isolation, and recovery. Collection of Technical
Papers - AIAA Guidance, Navigation, and Control Conference
2006, 2:1270–1287, 2006. doi: 10.2514/6.2006-6200. URL
https://arc.aiaa.org/doi/abs/10.2514/6.2006-6200.

https://dl.acm.org/doi/10.5555/2600239.2600241
https://arxiv.org/abs/2012.05946v1
https://link.springer.com/article/10.1007/s10846-021-01383-5
https://link.springer.com/article/10.1007/s10846-021-01383-5
https://dl.acm.org/doi/abs/10.1145/2723872.2723882
https://github.com/mavlink/mavros
https://github.com/mavlink/mavros
https://doi.org/10.1145/3265639.3265652
https://doi.org/10.1145/3265639.3265652
https://arxiv.org/abs/2203.13809v1
https://ieeexplore.ieee.org/document/9221340/
https://ieeexplore.ieee.org/document/9221340/
https://kubernetes.io/docs/home/
https://link.springer.com/article/10.1007/s10846-017-0551-4
https://link.springer.com/article/10.1007/s10846-017-0551-4
http://dx.doi.org/10.1145/2968478.2968502
http://dx.doi.org/10.1145/2968478.2968502
https://link.springer.com/article/10.1007/s10514-020-09913-0
https://link.springer.com/article/10.1007/s10514-020-09913-0
https://link.springer.com/chapter/10.1007/978-3-319-55553-9_8
https://link.springer.com/chapter/10.1007/978-3-319-55553-9_8
https://arc.aiaa.org/doi/abs/10.2514/6.2006-6200

	Introduction
	Background and Related Work
	The Starling System
	System Requirements
	System Architecture
	Simulation
	Real Flight

	Multi-Drone Path Following Use Case
	Synchronous Path Following
	Development

	Conclusion

