
Heterogeneous Multi-Robot Task Assignment for Urban Reconnaissance

Gong Chen∗, Duong Nguyen-Nam∗, Malika Meghjani∗, Phan Minh Tri, Marcel Bartholomeus Prasetyo,
Mohammad Alif Daffa, Tony Q. S. Quek

Abstract— We introduce Astralis simulator, a high-fidelity
robot simulation platform for developing multi-robot and
human-robot coordination algorithms that can be translated
to real-world environments. It features dynamically initializing
virtual environments with real-world 3D point cloud data and
virtual random obstacles to create multiple scenario variants
for algorithm validation. The simulator controls Unmanned
Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs),
and human avatars. The simulated robot models are equipped
with high fidelity control and navigation capabilities that can
be deployed on real robot platforms. We use the simulator to
analyze human-robot coordination algorithms for search and
rescue missions.

I. INTRODUCTION

Multi-robot system validation with virtual robots in sim-
ulated environments is an essential step for the design and
development of intelligent systems. Specifically, robot sim-
ulators alleviate the expensive hardware costs and logistics
of deploying physical robots by providing a simulated en-
vironment for safely validating interactions between robots,
environmental features, and even human operators [1]. We
propose a real-world-based simulator, Astralis [2], which
can incorporate scanned 3D models of environments and
physical robots’ dynamic models. For strategic planning and
validating the robustness and consistency of the user’s al-
gorithms, the simulator can generate random and systematic
environmental features (e.g., static and dynamic obstacles)
to be placed in the 3D virtual environment.

The primary objective of our simulator is the coordination
of heterogeneous robot teams and human-robot teams in
dynamic environments. Hence, we consider the physical
navigation constraints for two types of robots, the non-
holonomic constraints on UGVs and omni-directional motion
control for UAVs. For ease of commanding the robots, each
robot agent is equipped with fundamental actions to navigate
and interact with the human and the environment. A combi-
nation of such fundamental actions forms a complex robot
behavior, such as a strategic search. The simulator provides
a default urban environment consisting of two buildings and
an urban outdoor environment illustrated in Fig. 1(a).Each
human-robot team consists of 2 UAVs, 1 UGV and 1 human
operator as illustrated in Fig. 1(b). The human operator can
be controlled by keyboard commands, whereas the robots

∗ These authors contributed equally.
The authors are with Singapore University

of Technology and Design (SUTD), Singapore.
{chen gong,mohammad alif}@mymail.sutd.edu.sg
{namduong nguyen,malika meghjani,marcel prasetyo,
minhtri phan,tonyquek}@sutd.edu.sg

(a) Simulated urban environment representing a
physical environment with an estimated area of
38 000m2

(b) Human-robot team
Fig. 1: Default environment for Astralis simulator

can be controlled with our highly accessible API or directly
via a chat command interface.

Our contributions in this paper are: (a) a high-fidelity robot
simulator providing realistic graphics, heterogeneous robots,
and human avatars for validation and testing of multi-robot
and/or human-robot teaming algorithms, (b) a generalized
virtual environment initialization, which can incorporate real-
world LIDAR point cloud data for generating a digital twin,
(c) randomized generation of static and dynamic obstacles
for strategic planning and robust validation of both multi-
robot and human-robot teaming algorithms, (d) development
of fundamental and modular robot commands for building
complex behaviors for multi-robot and human-robot collab-
oration, (e) evaluation of mixed-rule based agent assignment
for a simulated target search mission.

II. SIMULATOR DESIGN

The proposed simulator for multi-robot system valida-
tion uses Unity, a commercial game engine software, ROS,
an open-source platform for robot control, and a custom-
designed ROS-Unity bridge. The simulator’s design is pre-
sented in Fig. 2. Unity was chosen for its easy-to-use
3D environment construction and customization features,
while ROS provides realistic robot dynamics models and
a navigation stack for seamless algorithm validation. The
whole system is containerized with Docker, allowing for
cloud deployment.

Fig. 2: System architecture of proposed simulator

A. Feature-Rich Unity Environment

Unity allows us to design custom features suitable for sim-
ulation purposes such as obstacle placement and modeling
of sensors. The human-robot team is initialized in Unity for
receiving simulated sensor data from the virtual environment.
With a wealth of openly shared assets, we have selected a
few human avatars and common objects to be part of the
default environment initialization.

1) Simulated Sensors: To allow navigation packages to
receive perception data from the simulated environment, we
have modeled simulated sensors in Unity. The simulated
sensors consist of RGB camera, depth camera, 2D lidar, and
IMU. Mesh colliders are implemented on the virtual robots
and other objects to ensure collisions can be accounted.

2) Generalized Environment Initialization: To reconstruct
a digital twin of real-world scenes in simulated environment,
we developed a generalized world initialization pipeline for
users to import real-world scanned data (point clouds, laser
scan, photogrammetry, etc.). This feature also supports the
conversion of CAD models and other 3D model file formats
(.igs, .skp, .sldprt, .obj, .glb, etc.) to be imported into Unity
as illustrated in Fig 3.

Fig. 3: Real World Data Import Pipeline

3) Dynamic Placement of Obstacles: For robust valida-
tions of multi-robot and human-robot coordination algo-
rithms, we develop a dynamic obstacle placement algorithm
where non-overlapping obstacles are placed in the free space.
This process involves two stages: analyzing the floor nor-
mal of the objects to detect the free space regions in the

Table I: Fundamental Robot Actions

Agent Action Description

UAV

move move to a place
hover hover in place
search inward and outward spiral search over a given space
sweep vertical and horizontal search for human target

UGV move move to a place
sneak peek peek into a room

observe observe along a corridor

environment and wall tracing for detecting the boundaries
of free-space. Users can customize the messiness in the
environment and visual attributes of human avatars using a
JSON file format. The current list of dynamically placed
objects consists of: chairs, cabinets, tables, potted plants,
computer desks, and human avatars. Fig. 4 shows examples
of messiness index of 0, 0.5 and 1 in a 7m x 4m office
room.

Fig. 4: Examples of different messiness index

B. High-Fidelity ROS Backend

1) High-Fidelity Robot Model: For the simulated UAV
and UGV control, we use Firefly [3] and Husky [4] dynamic
models, respectively, in ROS. The integration between the
dynamic models of the robots with the interactive environ-
ment in Unity is generalized in such a way that other wheeled
robot models or aerial vehicles for which the ROS packages
are available, can also be simulated easily.

2) Fundamental Robot Actions: Since the UAVs and
UGVs have their unique navigation capabilities, we develop
separate sets of fundamental actions for them to interact
with the environment. These fundamental robot actions are
described in Table IV.

3) Robot Navigation: We provide a local planner for
dynamic obstacle avoidance and a global planner for the
obstacle-free path toward a desired goal location for the
robots. The UGV uses the open source UGV navigation stack
[5]. The UAV uses voxblox [6] tool and Skeleton Sparse
Graphs Planner (SSGP) [7] for 3D navigation. Our simulator
can be easily customized to support other motion planners as
long as the respective control packages for the customized
dynamic robot models are available.

4) Robot Task Handler: Robot task handler manages and
sends high-level commands to each robot. The execution
queue follows a first-in-first-out sequence. This handler can
also be extended to define different types of tasks. It plays
an important role in the system because it helps high-level
algorithms to command multiple robots at the same time.

5) Data Server: The data server is built for external
applications to get information not only from ROS but also
from Unity environment. Users can access the information
in the data server via our API handler or ROS service calls.

6) API Handler: For supporting user-defined applications
to access data and communicate with internal software
components of our simulator, i.e. “Task Handler” and “Data
server”, the API Handler is designed as a standardized
request and response server using ZeroMQ [8]. The infor-
mation that can be queried via the API is shown in Table II.

Table II: Data Attributes for API Queries

Attribute Value Type

Human
Avatar

”activity” ”sitting”, ”laying”, ”patrolling”, ”idle” string
”color” ”yellow”, ”red”, ”purple”, ”blue” string
”gender” ”male”, ”female” string
”height” ”tall”, ”medium”, ”short” string
”tiedToChair” true, false bool

Location

”location” [x, y , z] array
”messiness level” [0,1] float
”risk” [0,1] float
”sound” ”minimal”, ”moderate”, ”loud” string

Robot
”type” ”robot id” string
”pose” [x, y, z] array
”command” user defined action command string

7) Chat Command Interface: We have also designed a
chat interface for users to explicitly give commands to the
heterogeneous robot team. The interface can be used to query
status and assign navigation or search tasks for each robot as
shown in 5. This chat interface is particularly important for
sending high-level instructions to coordinate the robot team.

Fig. 5: Usage of chat command interface

C. ROS-Unity Bridge

The ROS-Unity Bridge, which is built using ZeroMQ [8],
allows Unity and ROS environments to communicate with
each other. The bridge uses publish/subscribe features from
the ZeroMQ library. For the implementation of ROS-based
coordination algorithms, users can call the ROS-Unity Bridge
service to query the robots’ state information or assign high-
level commands to them.

D. Simulator Capability Benchmarking

We benchmark our Astralis simulator with Nvidia Isaac-
Sim [9], FlightGoggles [10], AirSim [11] and Carla [12].
We qualitatively examine the simulator features in Table III.
The key design highlights of our simulator are: a highly
customizable environment and dynamic obstacle generation.
We simplify the importation of real-world data by presenting
a pipeline for users to import custom real-world scans
into the simulator directly. The dynamic obstacle generation
feature allows us to progressively increase the environment
complexity and robustly validate multi-robot and human-
robot coordination algorithms. In addition, we can vary the
visual attributes of dynamically generated human avatars

Table III: Simulator Capability Benchmarking

Feature Nvidia IsaacSim FlightGoggles AirSim Carla Astralis
Simulator

High-Fidelity
Dynamic Models Yes No Yes No Yes

Multi Robot
Support UGV UAV UAV UGV UGV/UAV

Environment
Types Indoor Indoor Outdoor Outdoor Indoor

Outdoor
Environment

Customization Medium Low Medium Medium High

Real-World
Based

Environment
No

Yes
(limited to

pre-existing assets)
No Yes

Yes
(For any scanned
real world data)

Dynamic Obstacle
Generation No No No Yes Yes

Human Robot
Interaction

Keyboard
Joysticks

Motion Capture
Joysticks

Keyboard
Joysticks

API

Keyboard
API

Keyboard
Joysticks

API
Chat Interface

Sensor
Support

RGB/D Camera
2D/3D Lidar

IMU

RGB/D Camera
1D Lidar

IMU

RGB/D Camera
2D/3D Lidar

IMU
Barometer

GPS
Magnetometer

RGB/D Camera
3D Lidar

IMU
GNSS
Radar

RGB/D Camera
2D Lidar

IMU

Physical World
Implementation Yes Yes Yes No Yes

3D
Environment

Engine
Unity3D Unity3D Unity3D Unreal Engine Unity3D

Containerization Supported Supported Supported Supported Supported
Software
Licence Commercial Open Source Open Source Open Source Open Source

similar to Carla simulator. We note that, though Nvidia
IsaacSim and AirSim both have the physical equivalents
for robot dynamic models, they either tailor only for UGVs
or UAVs. In contrast, our simulator supports heterogeneous
robots i.e., both UGVs and UAVs. This fills the gaps not
fully addressed by other simulators that we bench-marked
against.

III. MIXED HEURISTIC TASK ASSIGNMENT

We proposed a target search scenario where a team of
2 UAVs, 1 UGV and 1 human operator will be sent into
a 3 storey building to search for a potential target while
considering several partially known contextual information’s
of the environment. The building is abstracted into 6 building
segments and each segment consists of 3 rooms. For each
room to be searched, we define a set of contextual infor-
mation as risk value and messiness of a room. Risk value,
Erisk, refers to how safe it is for a human operator to enter
and messiness index, Emessiness, refers to how cluttered a
room is based on the randomized furniture generation.

Fig. 6: Bipartite Graph Representation
A. Bipartite Agent-Location Assignment

The agent-to-location pairing is abstracted into a bipartite
assignment graph. The effectiveness of the assignments could
be quantified as the weighted edge between the vertices in
the graph shown in Fig. 6. The reason to choose a bipartite
assignment is to avoid repeated pairing.

Given a unidirectional graph G = ((A,R), E) as a
weighted bipartite graph with real weights w : E → R. The
agents (A) and rooms (R) are represented by the nodes in
the graph. The edge, E, are the weights calculated based on

the contextual information associated with each Ai and Rj .
Edist is the normalized distance for the agent to a particular
room with respect to the average distance to all the rooms.
For the UAVs, l2 distance is used. For the UGV and the
human, Manhattan Distance is used to compensate for their
navigation constraints. Erisk is the associated risk value
with a room. Emessiness is the level of the messiness of
a room. Both Erisk and Emessiness are predetermined with
a range of [0, 1]. After E is computed, we use a minimum
weight full matching in which a matching M ⊆ E with
cardinality |M | = min(|A|, |R|) which minimizes the sum
of the weights of the edges included in the matching.

To prevent UGV from going into a highly cluttered room
and human from going into a high-risk area, tunable weights,
W1 and W2, are introduced as a scaling factor on the weight
for pairing edges, W = [whuman, wUAV , wUGV]. Overall,
the total weighted cost, E(i)(j), for each agent, Ai, and room,
Rj , pairing is defined as below:

E(i)(j) =
E

(i)
dist

1
n

∑n
k=0 E

(k)
dist

+ E
(i)
riskW

(i)
1 + E

(i)
messinessW

(i)
2(1)

B. Rule-based Agent-Action Assignment

With reference to the fundamental actions shown in Table
IV, we used a rule-based method to determine which action
the UAV or UGV should take while performing a search.

Risk is the top priority to consider the action in the room.
If the risk is high in the room, UAV will do an inward spiral,
as the inward spiral provides a strategic path for the UAV
to spiral into the center of the room. If the risk is low for
UAV, it will do an outwards spiral to minimize the search
time in a room with a low threat. High-Risk means risk value
≥ 0.5, and High-Messiness means messiness index ≥ 0.5.
The overall action decision is summarized in the table below

Table IV: Rule-Based Action Assignment
Low Risk High Risk

Low Messiness UAV: Outward Spiral
UGV: Sneak Peek

UAV: Inward Spiral
UGV: Observe Corridor

High Messiness UAV: Horizontal Sweep
UGV: Observe Corridor

UAV: Inward Spiral
UGV: Observe Corridor

IV. EXPERIMENTS AND RESULTS

A highlight of our Astralis simulator capabilities with the
default two building environment is presented in the follow-
ing video link: https://youtu.be/jarLqzwSdi0. A highlight of
our results for a more complex environment is presented
in our open-source repository: https://gitlab.com/marvl-
astralis/astralis.

A. Validation of Mixed Heuristic Task Assignment Algorithm

In the experimental analysis section, we primarily examine
how to allocate the UGV and the human operator. Our
aim in this assignment is twofold: firstly, to reduce the
likelihood of assigning the human operator to high-risk areas,
and secondly, to minimize the deployment of the UGV in
areas with high levels of messiness. An example of the
action assignment can be viewed in Fig. 7. With reference to
Table IV, as the two UAVs are assigned to high-risk areas,

they are tasked with an inward search action. The human
operator is not assigned to any location as the nearby UGV
is better suited to investigate the area with very low levels
of messiness and is thus tasked to perform a sneak peek.

Fig. 7: Bipartite Graph Representation

We generate 1000 proposed scenarios with random ini-
tialization of agent position, risk value, and messiness value
for each room. W1 and W2 from Eqn. 1 empirically tuned
to be [0, 5, 10] and [5, 0, 10]. Given 4 agents are one-to-
one matched to 3 rooms, one agent will always remain
unassigned. In our analysis, this unassigned agent could be
either the UGV or the human operator. To evaluate the effec-
tiveness of our proposed assignment algorithm, we compare
it with a naive assignment strategy that only considers the
distances in Table V. By introducing tunable weights W ,
we significantly reduce the likelihood of assigning a human
operator to a high-risk area, from 39.3% to 0.0%, and reduce
the likelihood of assigning the UGV to high-messiness areas,
from 36.0% to 5.9%. However, it is worth noting that the
UGV may still be assigned to high-messiness areas since
these areas can also be associated with high risk. As our
priority is to minimize the pairing of human operators with
high-risk areas, we assign the UGV to such areas regardless
of their messiness value.
Table V: Results for 1000 randomly initialized assignments

Naive Baseline Mixed Heuristic Assignment
Human Assigned

to High-Risk Area 39.3% 0.0%

UGV Assigned
to High-Messiness Area 36.0% 5.9%

A video of the assignment strategy leading to a target
discovery tested in Astralis simulator can be seen in ”Scene
Two” from https://youtu.be/jarLqzwSdi0.

V. CONCLUSION
This paper introduces Astralis simulator which is an

open-source human-robot teaming simulator. It achieves a
functionality comparable performance when compared to the
state-of-the-art simulators and has an edge in simulating
heterogeneous robot teams, robust algorithm validation and
strategic planning. In addition to a default urban environment
consisting of indoor and outdoor spaces, we present a novel
way for users to import the real-world data into the simulated
environment with the functionality of being able to add vir-
tual static and dynamic obstacles. We demonstrated a mixed
heuristic task assignment for a simulated heterogeneous robot
search mission.

https://youtu.be/jarLqzwSdi0
https://gitlab.com/marvl-astralis/astralis
https://gitlab.com/marvl-astralis/astralis
https://youtu.be/jarLqzwSdi0

REFERENCES

[1] Sarah Al-Hussaini, Jason M. Gregory, Neel Dhanaraj, and Satyan-
dra K. Gupta. A simulation-based framework for generating alerts for
human-supervised multi-robot teams in challenging environments. In
2021 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 168–175, 2021.

[2] Gong Chen, Duong Nguyen-Nam, Malika Meghjani, Phan Minh Tri,
Marcel Bartholomeus Prasetyo, Mohammad Alif Daffa, and Tony Q. S.
Quekk. Astralis: A High-Fidelity Simulator for Heterogeneous Robot
and Human-Robot Teaming. In IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2022.

[3] Fadri Furrer, Michael Burri, and Roland Achtelik, Markusand Sieg-
wart. Robot Operating System (ROS): The Complete Reference
(Volume 1), chapter RotorS—A Modular Gazebo MAV Simulator
Framework, pages 595–625. Springer International Publishing, Cham,
2016.

[4] Tony Baltovski. Husky: Common packages for the clearpath husky.
Available online at: https://github.com/husky/husky.

[5] ROS Navigation stack. Available online at: https://github.
com/ros-planning/navigation.

[6] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart,
and Juan Nieto. Voxblox: Incremental 3D Euclidean Signed Distance
Fields for on-board MAV planning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1366–
1373, 2017.

[7] Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto.
Sparse 3D Topological Graphs for Micro-Aerial Vehicle Planning. In
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1–9, 2018.

[8] ZeroMQ. Available online at: https://zeromq.org/.
[9] Nvidia Isaac Sim. Available online at: https://developer.

nvidia.com/isaac-sim.
[10] Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou, and Ser-

tac Karaman. FlightGoggles: Photorealistic Sensor Simulation for
Perception-driven Robotics using Photogrammetry and Virtual Reality.
In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6941–6948, 2019.

[11] S. Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehi-
cles. In FSR, 2017.

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. CARLA: An open urban driving simulator. In
Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, editors, Pro-
ceedings of the 1st Annual Conference on Robot Learning, volume 78
of Proceedings of Machine Learning Research, pages 1–16. PMLR,
13–15 Nov 2017.

https://github.com/husky/husky
https://github.com/ros-planning/navigation
https://github.com/ros-planning/navigation
https://zeromq.org/
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim

	Introduction
	Simulator Design
	Feature-Rich Unity Environment
	Simulated Sensors
	Generalized Environment Initialization
	Dynamic Placement of Obstacles

	High-Fidelity ROS Backend
	High-Fidelity Robot Model
	Fundamental Robot Actions
	Robot Navigation
	Robot Task Handler
	Data Server
	API Handler
	Chat Command Interface

	ROS-Unity Bridge
	Simulator Capability Benchmarking

	Mixed Heuristic Task Assignment
	Bipartite Agent-Location Assignment
	Rule-based Agent-Action Assignment

	Experiments and Results
	Validation of Mixed Heuristic Task Assignment Algorithm

	Conclusion
	References

