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Abstract—Inter-individual differences are studied in natural
systems, such as fish, bees, and humans, as they contribute to the
complexity of both individual and collective behaviors. However,
individuality in artificial systems, specifically in robotic swarms,
is undervalued or even overlooked. Agent-specific deviations from
the norm in swarm robotics are usually understood as mere noise
that can be minimized, for example, by calibration, or regulated
by feedback control. We observe that robots have consistent
deviations and argue that awareness and knowledge of these can
be exploited to serve a task. We use Kilobots as our case study.

Index Terms—Inter-individual Variations, Swarm Robotics,
Heterogeneity, Complex Systems

I. INTRODUCTION

While in artificial swarms, such as swarm robotics, hetero-
geneity in software and hardware is only appreciated since
recently, the concept is widely recognized in studies of natural
(complex) systems, such as fish schools, animal groups, and
humans. Diversity plays a significant role in the complexity of
collective systems. The interplay of diversity and complexity
in collectives is relevant in a variety of disciplines, such as
physics, biology, economics, social science, and neuroscience,
indicating a possible generality of the subject. According
to [1], three different types of diversity are distinguished as:
“variation within a type, differences across types, differences
between communities.” We focus on the first type of diversity,
aka inter-individual variation, in this paper. From a number of
studies, we know that the complexity of system behaviors can
stem from diversity [1]. Fish are a well-studied species in this
regard. For example, [2] studied fish and the development of
differences in their left-side body muscles compared to those
of the right-side. They report that the “righty” fish are more
likely to be hooked on the right side of their mouth. Also, [3]
studied the asymmetric development of muscles in fish.

Different from natural systems, the inter-individual varia-
tions in artificial systems are often overlooked. As mentioned
above, we study the first type of diversity [1]. However,
other types have recently received attention, for example, the
diversity in the composition of the population, that is, having
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different robotic platforms (species) within a collective [4],
[5]. In this paper, we focus on inner-platform inter-individual
differences, the so-called quasi-homogeneity [6]. We even
focus narrower, by excluding controllable or programmable
variations (software heterogeneity); for example, robots with
different control software, specialized in different tasks as
by [7]. But rather we explore the intrinsic variations, that come
naturally with the embodiment of robots and are an inseparable
part of these systems.

In most studies, the system behavior that emerges from
the agent-agent, and agent-environment interactions is already
complex, so that assuming a homogeneous system is suf-
ficient [8]. The simplifying assumption of homogeneity in
artificial systems, and in particular swarm robotics, improves
tractability. We divide such assumptions into two main groups:
noise and error. For the first group, individuality is seen
as agents being deviated from the collective norm. To deal
with this matter in the modeling, one increases the variation
of the noise to the extent that it covers the inter-individual
variation, resulting in an increase of (aleatoric) uncertainty
in the model [9], which is indeed due to the (epistemic)
uncertainties of the system that is seemingly unknown to the
observer. We highlight the possibility to extract information
from this “noise” that can be exploited and help us predict the
behavior of the system more accurately. We use the example of
heading bias for Kilobots [10] to elaborate upon the concept.
We argue that individual robots show persistent non-zero bias
whose time correlation is infinitely large, which makes the
noise assumption questionable. Another engineering solution
followed by the noise assumption is the attempt to calibrate
robot sensors and motors. Although it reduces variations, the
effect is only temporary and often deteriorates over time.
Calibrated robots eventually get decalibrated and deviate from
the norm again. We ask: what is the acceptable extent to which
an engineer should be concerned about the decalibration of
robots? For the example of the heading bias of Kilobots in an
optimization task, we show that the deviations from the ideal
robot do not necessarily result in a performance decrease, but
rather counter-intuitively enhance it in certain cases.

The second approach is the regulation of deviations by
control feedback [11]. By interpreting deviations from the
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Fig. 1: Trajectories of robots moving on a straight line (b,c are in a simulation, d is real robot experiment). a) The color map of
heading bias (used only in figures c, e). b) The red line is the trajectory of 100 ideal, identical robots without noise. The black
lines are different realizations of the trajectories of identical robots with Gaussian noise. c) The trajectories of heterogeneous
robots with noise. d) 4 Kilobots moving on a supposedly straight line for 4 independent repetitions starting at (0,0). Each
color corresponds to a distinct robot. e) Mean heading bias (over time) for each experiment grouped by robot ID, showing
the individuality of heading bias for Kilobots. The right histogram is the ensemble distribution if we remove the dimension of
individuality.

desired behavior as an “error”, which is meant to be regulated
by the control system, the robot constantly tries to modulate
its natural deviations and to minimize the error. This requires
a feedback signal to form a closed loop [12]. However, in
minimal swarm robots with simple noisy perceptions, and
stochastic actuators the feedback solution is either expensive
or impossible. We ask: should we treat individuality as noise,
or a bug and hence try to solve it? Or is it rather a feature
that the individual (or the collective) can exploit? Nature has
shown a great ability to increase diversity, and to find a way
to take advantage of it. Given that most of the swarm robotic
systems are bio-inspired, it seems even mildly ironic to ignore
or even fix this feature.

II. HETEROGENEITY IN MOTION

In this section, we study how robots with heterogeneous
motor abilities perform tasks differently. First, we model the
motion of a differential-wheel robot and describe the effect of
heading bias on its motion in simulation. Second, we report
the data we analyzed from real Kilobot experiments, where
robots are supposed to walk in a straight line.

A. Model

Variations in actuation abilities among agents lead to dif-
ferent movement dynamics. We model a robot moving with
speed of |v| in a 2-dimensional (x, y) space with a heading
angle of θ using these equations of motion:[

ẋi

ẏi

]
= (|vi|+ ηv)

[
cos(θi)
sin(θi)

]
,

θ̇i = ωi + ηω (1)

For the case of Kilobots, [13] reported “strong inter-individual
variations” for linear speed and measured the variance of speed
distribution (or equivalently ηv) for calibrated Kilobots. We
focus on the rotational motion and heterogeneity in the heading
bias of Kilobots.

B. Heterogeneity in Heading Bias

Here we provide simple measurements of individuality in
robots. To measure the heterogeneity in heading bias, here
we only consider the simple straightforward motion as an
ideal motion, where the desired rotational velocity is zero
(ωi

des = 0). We conducted experiments with real Kilobots
and in simulation using ARGoS simulator. We program robots
to move in a straight line and log their position. For real robot
experiments, we record videos and post-process the video
frames using an object detection algorithm from OpenCV
library [14]. For simulation, we use the Kilobot extension of
ARGoS [13] and modified it by adding the heading bias.

If we choose to reduce the heading bias heterogeneity to
mere noise, we assume the following stochastic differential
equation for the turning rate of each individual i:

θ̇i = ηω, ηω ∼ N (µ, σ2). (2)

Notice that statistical properties of ηω(µ, σ) are without in-
dex i as they are meant as a population-wide one-fits-all model.
To show the trajectories from this type of model, we modified
the simulator by adding Gaussian noise N to the nominal
speed of each motor. The result of such model is a correlated
random walk (Fig. 1-b) that does not qualitatively cover all
trajectories we observe in real robot experiments (Fig. 1-d).
The assumption of a one-fits-all noise model results in a
mismatch between model and reality. Fitting the data of real
robots to this model, we get a joint (ensemble) distribution for
heading bias with mean close to zero (µ ≈ 0) and relatively
large variance (see far-right, rotated histogram in Fig. 1-e).
This is similar to the distribution of speeds (|v|) reported
in [13]. With this model, we get a high variance (seemingly
aleatoric uncertainty), that is indeed reducible only if we
consider the individuality of robots as we do next. If we allow
each robot its individual (Gaussian) noise model, we get:

θ̇i = ηiω, ηiω ∼ N (µi, (σi)2). (3)

The added dimension (raised index i) to the parameter space
enables us to model the individuality of each robot, which
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Fig. 2: Phototaxis with real Kilobots. a) A snapshot of
one robot (same as in c) doing the deterministic phototaxis
(PR = 1.0) around the center of the source, with the decaying
red trace of its trajectory by post-processing the video. b-d)
Trajectories of 3 robots with different heading biases, each
showing 3 separate repetitions from the same initial point (red
plus). The light source is located at the center (blue star).

leads to lower aleatoric uncertainty. We show the distribution
of heading bias for each robot in Fig. 1-e. The data confirms
our reasoning as robots have persistent, non-zero heading
biases that are individual-specific. The consistency of heading
bias for each robot suggests a strong inter-agent variation
among Kilobots. Furthermore, these intra-individual variations
are on average smaller than the ensemble variance (σi < σ).

To simulate the heading bias, we add a deterministic off-
balancing term to the left and right motor speeds. This non-
zero rotational velocity generates circular trajectories. We
illustrated the results of the simulations as a proof of concept
in Fig. 1-c. We get trajectories of robots in simulation that have
a similar curvature to their real robot experiments, which was
not possible even by increasing the variance of the zero-mean
noise in Eq. 2.

C. Development of Individuality over Time

The development of individuality in natural systems has
already been linked to a variety of factors, such as environ-
mental, social, and behavioral reasons. For artificial systems,
the source of such developments in hardware individualities
can be traced down to aging of mechanical components,
such as fatigue; undergoing a major disturbance, such as
damage; or simply the change in the energy source, to name
but a handful of causes. For the heading bias of Kilobots
in particular, we observe that over the time of experiments,
robots that initially are well-calibrated lose their calibration.
This de-calibration process is another reason why individuality
emerges in synthetic systems and why calibration is not a
lasting solution. Different platforms most likely have different
timescales for losing their calibration.

III. PHOTOTAXIS AS AN EXAMPLE SCENARIO

Phototaxis is a spatial sample-based optimization algorithm
that maximizes the objective reward for the robot, which, in
our case, is the light intensity distributed in a convex shape.
It is an example behavior showing how simple organisms
approach the center of an attractive light source [15], [16].
The algorithm is simple enough to be implemented on minimal
robots, such as Kilobots. Our phototaxis algorithm is different
from the random search explained in [17] and the collective

phototaxis as in [18]. Our more greedy algorithm boils down
to the following procedure: if the intensity of the light sample
gets closer to the objective intensity, the robot keeps going
forward, otherwise, it turns. The robot stops if it gets close
enough to the center of the source. The algorithm to decide
which direction to turn to is determined by one parameter PR
which is the probability to turn to the right (and PL = 1−PR).
To study how this parameter affects the performance of
Kilobots, we consider three different configurations:

(asymmetric) deterministic turn to the right (PR = 1.0),
symmetric stochastic turns (to the left and right) (PR = 0.5),
and asymmetric stochastic turns (PR = 0.25).

A. Phototaxis for Real Kilobots

Our real robot experiments prove that despite the simplicity
of the algorithm and heterogeneity in motion, Kilobots can lo-
cate and exploit the center of the light source. Our experiments
with real robots (see Fig. 2) for the first algorithm suggest that
robots have different performances (in approaching the source
center). With PR = 1.0, a robot with a left heading bias (Fig. 2-
b) has a lower performance compared to the other robots that
have either negligible (Fig. 2-c) or obvious right heading biases
(Fig. 2-d). In some cases, too strong left-biased robots failed
to get closer to the center and left the area of interest.

B. Phototaxis for Kilobots in Simulation

To study the effect of heading bias on the performance of
phototaxis for Kilobots, we conduct experiments in ARGoS
with the modified simulator. We test 100 simulated robots
with heading biases uniformly distributed in the range of
[−0.04, 0.04]. Each robot executes the phototaxis algorithm,
for 100 independent Monte Carlo simulations.

We consider the distance of the robot to the center of the
source for the performance metric as cost and calculate the
average over the last 100 data points. We illustrate the results
for each trial as a point in Fig. 3. As expected, the robots
vary greatly in their phototaxis performance. This variation
in the performance would have been otherwise ignored when
assuming homogeneous robots. A key finding is that assumed
“perfect” robots without bias are outperformed by “non-
calibrated” robots (see Fig. 3-b, heading bias of ±0.023).
This relates to our observation with real robots in Fig. 2. To
elaborate more on the optimality of non-zero bias robots, let us
assume an evolutionary optimization algorithm that modifies
the configuration of a robot (heading bias) over generations
for a given fixed phototaxis parameter, e.g. PR = 0.5. The
fact that the stable optimal heading biases are located at non-
zero would cause the evolutionary algorithm to incline toward
more biased configurations and select them more often over
generations. The attraction points depend on where to start the
evolutionary optimization. For each of PR = 0.25, 0.5 there are
two separate optimums, one with a positive and the other with
a negative heading bias. It confirms that calling individuality
a bug or a flaw (with negative impacts) is not always true.
Nonetheless, there are also other scenarios, where being biased
causes harm in an asymmetric manner, for example, having an



(a) PR = 0.25 (b) PR = 0.5 (c) PR = 1.0 (d)

Fig. 3: Performance of robots with different heading biases in doing phototaxis with different parameters in simulation. a-c) A
dot represents the performance of each robot at each simulation trial and is color-coded based on its heading bias. The black
line shows the mean value over 100 Monte Carlo repetitions. The inset plots show Racc (red) and Nacc (blue) vs thresholds
δacc. d) The ensemble distribution of all robots together (the light pink violin plot) by removing the individuality dimension.
The black box plot shows the quantiles and the green line is the mean of all data points, each is shown by a purple dot.

asymmetric chance of being hooked on one side compared to
the other for a “righty” fish [2].

In addition, we compare the performance of different al-
gorithms. Each algorithm favors a specific range of heading
biases. For the deterministic algorithm (Fig. 3-c), where robots
always turn to the right (PR = 1.0), the algorithm favors
the right-biased robots more than the others. In comparison,
for the algorithm with a higher chance to turn to the left
(PR = 0.25, Fig. 3-a) the left-biased robots achieve higher
rewards (lower cost). To highlight the effect of heterogeneity
of heading bias in optimization tasks we imagine a learning
problem, where robots are supposed to learn the optimal value
of PR. Given the results we provided here, it is predictable that
robots with non-identical heading biases converge to different
optimal parameters. A left-biased robot would pick a lower
PR compared to a right-biased robot. In that light, we argue
that tuning one parameter for all robots by only optimizing
the performance of a single robot with a specific feature (e.g.,
a non-biased robot) might not be the best practice.

Another important point is the extent of acceptable “uncal-
ibratedness”; that is the range of heading bias within which
robots perform reasonably well (Racc). To quantify Racc we
define a threshold (δacc) for the performance, below which
the criterion is satisfied. We show the acceptable range for
δacc = 0.75m in Fig. 3-a-c with the green horizontal line.
Another similar performance metric can be measured for the
number of experiments (dots) whose performance is below
the threshold, we call this metric Nacc. We illustrated the
performance metrics versus thresholds in the inset plots. We
also compared the three algorithms in terms of the acceptable
range (and number) versus the threshold. The most efficient
algorithm as of this metric depends significantly on where
we set our threshold. Apart from performance comparison
among algorithms, the acceptable range proposes freedom
from calibrations. From an engineering point of view, having
less necessity for calibrating robots would reduce the required
effort, energy, and cost to maintain such systems.

On the contrary, if we ignore individuality, we get a joint
distribution of performance for all robots (see Fig. 3-d.) Fol-
lowing this simplified interpretation we may draw conclusions

that are either inaccurate, or not generally valid. For example,
the mean performance (denoted by the green line) represents a
higher performance for PR = 0.5. However, this may not hold
for all robots. Also, the heavy upper tail for PR = 1.0 cannot
be explained unless we look through the second dimension,
which is individuality.

IV. CONCLUSION

Inspired by studies on natural systems and the complex
behavior caused by inter-individual variations, we attempt to
shed some light on the concept of (intrinsic) individuality in
swarm robotics. We found that this type of heterogeneity in
robot systems in general, and swarm robots in particular, are
often overlooked. We argue that robots have agent-specific
persistent features, that are characteristic parts of them. These
natural differences are either assumed to be “noise” or error
and hence provoke solutions like calibration (as an offline
solution) or regulation using feedback control (as an online
solution). We argue that there is some useful information in
the variations which can be exploited to make more accurate
models and hence predictions. We also showed that robots
develop individuality over the course of experiments, and thus
calibration is not always a lasting solution. Also, regulating
the errors comes with the price of a feedback signal, which is
usually too costly for minimal swarm robots.
Furthermore, dropping heterogeneity as a dimension of the
problem space will lead to increased uncertainty in the model.
We observe, report, and measure the heterogeneity in motion,
and in particular the heading bias of real Kilobots, and show
that the robots have agent-specific, persistent, non-zero mean
biases. With the accurate model for heterogeneity in heading
bias, we scaled up our studies and showed how different
robots vary in their performance. Our results prove that calling
inter-individual variations a bug or a flaw is not always true.
Our results show a counter-intuitive comparison of the perfect
and biased robots, with the perfect robot being outperformed
by biased ones in some tasks. Besides, the new perspective
opens space for new insights to be gained from these complex
systems.
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