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Abstract— From nursing homes to war zones, keeping a
close eye on someone’s whereabouts is invaluable and often
necessary. In most cases, the use of security cameras or even
ground robots would be ideal. However, a lack of control of
the environment may prohibit cameras. Further, in situations
where the environment is unknown or unpredictable, knowledge
of the layout may be not available nor accurate. This poses a
challenge for a single ground robot to simultaneously navigate
and track an agent. To address these challenging constraints, we
explore preliminary work in developing a multi-robot system
composed of a slow-moving ground robot and an agile aerial
robot. The described system utilizes the object recognition
capabilities of the ground robot to locate and begin tracking
an agent – in our case, a human – and spatially task the aerial
robot to get within close proximity of the human to then begin
cooperatively tracking. To implement this solution, we address
multiple challenges regarding cooperatively tracking a human
from both the ground robot’s perspective and the aerial robot’s
perspective.

I. INTRODUCTION

The field of unmanned mobile robotics has experienced
substantial growth in the last few decades. Researchers
have tackled more complex problems involving complicated
constraints, like restricted environments and differently mo-
tivated agents [1]. A recent and important problem is human-
aware robot navigation [2]. Human-aware robot navigation
involves perceiving and navigating safely among people.
Delivering food on city streets or following a nurse through a
hectic hospital, both are under the umbrella of human-aware
navigation with the latter being person-following. Person-
following is a branch of human-aware navigation where
the objective is to navigate within a desired proximity of
a moving person [3]. As person-following tasks become
more complex and involve more constrained environments,
sub-tasks can become too difficult to optimally run con-
currently. Heterogeneity can be implemented in to systems
to be used for human-robot cooperative tasks. A nurse in
a field hospital leading an x-ray machine carrying robot
to an operating room, or a first responder leading a robot
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Fig. 1. Our Unity-based simulation environment containing an autonomous
ground vehicle, circled in red, an autonomous micro-aerial vehicle, circled
in blue, and a person (e.g., soldier model) circled in yellow.

carrying a natural disaster survivor to an exit are both
examples where heterogeneity can improve task allocation
by splitting the mission into sub tasks, with a fast aerial
robot tasked with maintaining localization of the person in
the environment while a large slow-moving ground robot is
navigating towards the person..

Many solutions to person following, some involving robot
teaming and/or heterogeneous systems, have been proposed.
There is no one solution that optimally fits all person follow-
ing applications because each application has its own unique
set of objectives, context, and team dynamics. Existing
solutions from literature include general use single ground
robots [4], general use single aerial robots [5], [6], social
ground single-robots [7], [8], social ground homogeneous
multi-robot teams [9], and outdoor heterogeneous multi-robot
teams [10].

When tasked with following an agent, in our case a person,
we cannot assume their behaviors will be compliant with
a robotic system’s perception and navigation limitations.
To this end, we assume there is no a-priori information
available to precisely predict the person’s motion, and that
the person’s trajectory is non-ergotic, i.e. even under identical
circumstances their behavior may not be deterministic.

A robotic system will have a specific set of constraints,
such as payload, sensing, maneuverability, and speed lim-
itations. Micro-aerial robots are extremely payload-limited,
which in turn limits sensing and computational power and
can prevent fully independent autonomous operation. For
this reason, our system pairs a micro-aerial robot (UAV)
with a ground robot (UGV) with greater payload capacity
for more powerful sensing and compute capabilities such as
mapping, navigation, and person detection. This compliments
our simple UAV with the ability to localize itself and the
person in the same space as the UGV.



Finally, the environment may present its own limitations.
In our application, we assume the UAV maintains a fixed
height above the ground. Where in some outdoor environ-
ments a UAV may have the opportunity to gain altitude and
direct its sensors downwards to get a birds-eye view of the
person in the environment, we seek to address the case where
this might not be possible for a variety of reasons, such
as indoor settings, intermittent height obstacles such as tree
canopies, or airspace restrictions. This space of aerial and
ground robot teams in height restricted space is where our
research sits.

Robot agents can be constrained by the nature of their
desired tasks and environments they are working in. Other
agents related to the robots mission can be motivated in a
way to require the robots to ignore any assumptions they
might have made. To address these specific velocity, height,
and agent related constraints, we developed a heterogeneous
multi-robot system capable of following a non-cooperative
agent through a height restricted environment.

II. PROBLEM STATEMENT

We first define a team of one ground robot, rg, and one
aerial robot, ra, a dynamically moving human, h, and a
sequence S. S, shown in Fig. 2, is a sequence of n points
visited by h over time. S = {(x0,y0),(x1,y1), . . . ,(xn,yn)},
where (xt ,yt) represents the x− and y−coordinates of h in
Cartesian space at time t ∈ [0,n]. Our objective is to minimize
the distance between rg and h while maximizing ra’s view
of h over the sequence S.

It is assumed that rg is non-holonomic, and the maximum
velocity of rg is less than that of h, i.e., |rg v(t)|< |hv(t)| for
all t. It is also assumed that ra and h are holonomic, and the
maximum velocity of h is less than that of ra, i.e., |hv(t)|<
|ra v(t)| for all t. Both rg and ra have no prior knowledge
of the environment, and trivial mobility challenges in the
environment.

View-shed is defined as the set of points, (x,y), the
robot has direct line-of-sight from their current position
constrained to the field of view of the on-board camera. A
robots view-shed is represented as ra vs(t) for the UAV and
rg vs(t) for the UGV. h is initially located in the view-shed
of rg, hx,y ∈ rg vs(t) for t = 0. It is assumed when h is in
either the view-shed of rg or ra, h is localized in the frame
of the team’s shared map of the environment.

At each time step t, two sets of candidate goal locations,
Cg, navigable by the UGV, and Ca, navigable by the UAV, are
computed and a set of possible future location of h, Fpredicted ,
is computed over a static time-horizon. Cg is composed
of set of (x,y) coordinates that rg can navigate to, and
Ca has coordinates that ra can navigate to. Fpredicted(t) =
{(xpred0,ypred0), . . . ,(xpredth,ypredth)), where th is a spec-
ified time-horizon, is computed by rg as a list of predicted
locations, (x,y), of h th seconds in the future.

rg selects a goal location, rg G, from Cg that minimizes the
distance between rg and h at time t, while rg selects a goal
location , ra G, from Ca for ra that maximizes coverage of

ra vs over h’s predicted motion, Fpredicted(t). Fig. 3 displays
the optimal goal location selection.

The problem can be formalized as a multi-objective opti-
mization problem, Eq. (1), where we minimize objective f1,
the distance between rg and h over sequence S, and maximize
objective f2, the coverage of ra vs over h’s predicted motion,
Fpredicted(t), over sequence S.

F = (min( f1),max( f2)) (1)

f1 =
n

∑
t=0

||(rg goal,S[t])||2 (2)

f2 =
n

∑
t=0

|Fpredicted(t) ∈ ra vs(ra G)| (3)

To evaluate the performance of the team we will collect
the total distance traveled by rg, time it took rg to reach h,
average distance between rg and h, and percentage of time
h is in ra vs.

To address this problem we present preliminary work on
the development of a real-time and context-aware person
following system able to handle unpredictable indoor envi-
ronments using a heterogeneous robot team composed of an
unmanned aerial vehicle and unmanned ground vehicle.

III. APPROACH

To solve the problem, we formulate a solution for goal
location selection for both the ground and aerial robot. The
approach as a whole involves motion prediction, candidate
goal location generation, goal location scoring, and goal lo-
cation selection. Person detection, localization, and tracking
are outside the scope of this work.

In our formulation, time-horizon refers to the number of
seconds a motion model of a person is predicted into the
future. Position history refers to the number of seconds in
the past over which position data is collected of a person and
used to calculate a motion model. Motion prediction refers
to the process of estimating the future motion or trajectory
of an object or agent based on its current state and past
observations.

The goal of motion prediction, in our case, is to anticipate
the future behavior of a person in order to make informed
decisions. This approach uses a simple second degree poly-
nomial to model the person’s motion, P(t). Using position
data over the position history, a polynomial fitting algorithm
is used to calculate the coefficients. The input is the time in

Fig. 2. Positions of the yellow circles represent the progression of the
person’s position over time t, a visualization of S, represented by the
numbers.



seconds the position was observed and the output is a set
of coordinates, (x, y). Points are then generated with this
polynomial by getting coordinates between current time and
the time-horizon in one second intervals. Each point is then
used as the input for a normal Gaussian distribution with a
σ of 0.9 generating 10 points each. These points, Fpredicted ,
are meant to characterize the potential motion of the person
over the time-horizon.

Candidate goal location generation in this instance uses
a naı̈ve implementation where goal locations are selected
at three different distances in a radius around the person.
A vector is calculated between the current position of the
person and the person’s predicted coordinate at a time-
horizon: this is called the time-horizon vector.

(1) The closest set of candidate goal locations, one meter
from the current location of the person, selects four goal
locations forward, backward, left, and right of the time-
horizon vector.

(2) The next set of candidate goal locations are calculated
with a radius equal to the length of the time-horizon vec-
tor. Six goal locations, equally spaced out in a circle, are
generated with this radius.

(3) The final set of candidate goal locations are selected
similar to the second. Eight goal locations are selected,
equally spaced out in a circle around the person’s current
position with a radius two times the distance of the time-
horizon vector.

All candidate goal locations are oriented towards the mean
of predicted motion points, Fpredicted . Finally, all of the
candidate goal locations in the set are checked to see if they
can be navigated toward. If a goal location is in or behind
obstacles prohibiting one of the robot’s ability to navigate
to its goal location, it is not included in that robot’s set
of candidate goal locations. If rg can navigate to the goal
location, it is included in Cg, and if ra can navigate to it, it
is included in Ca. If the goal location is in unexplored space,
it is included by default.

There are two goal location scoring formulas, one for
each robot. Eq. (4) addresses Eq. (2), where rg scores goal
locations based on the goal location’s distance to the person’s
predicted location over some time-horizon. Similarly, Eq. (5)
addresses Eq. (3), where ra scores goal locations based on
the goal location’s view of the person’s predicted motion
over some time-horizon.

rg assigns each candidate goal location’s score the eu-
clidean distance between the goal location and the value of
the predictive motion polynomial at the time-horizon z:

cscore −→ ||(c,avg(Fpredicted(z)))||2 ∀ c ∈Cg (4)

ra assigns each candidate goal location’s score the number
of predicted motion points, Fpredicted , in ra’s view-shed:

cscore −→ |Fpredicted ∈ ra vs| ∀ c ∈Ca (5)

The final step in the approach is goal location selection.
At each time step, rg selects the goal location in Cg with the
lowest score, and ra select the goal location in Ca with the
highest score.

Fig. 3. Transparent light blue area visualizes UAVs current view-shed.
Dark blue circle and area visualize goal location and goal view-shed that
maximizes view of the person’s projected motion. Black dots represent the
possible future locations of h, Fpredicted . Red circle visualizes a UGV goal
location that minimizes UGV distance to person.

Fig. 4. This figure represents the current naı̈ve approach. Lines are paths
the agents took, filled circles are goal locations selected. Blue is the UAV,
red is the UGV, and yellow is the person.

IV. PRELIMINARY OUTCOMES

Here we discuss preliminary progress on system imple-
mentation and expected outcomes, including motion predic-
tion and a naı̈ve goal location selection algorithm.

A. Experiment Setup

The experiment occurs in an outdoor urban environment
rendered in a Unity ROS simulator. Figs. 1 display the agents
and environment. The experiment space is located around a
10 × 13 meter building. Figs. 4 and 7 display the path, in
yellow, of the person as it starts close to the starting location
of both the ground and aerial robot. The starting positions
of the UGV and UAV are marked on Figs. 4 and 7 by the
red and blue circles farthest to the left.

B. Current Implementation

Our current implementation uses ROS as a system frame-
work. Ground-truth simulation data is used for person de-
tection, localization, and tracking. Motion prediction is cur-
rently implemented as described. The naı̈ve goal location
selection algorithm works by obtaining coordinates from
the motion prediction polynomial with an input of a time-
horizon, which is parameterized, and selecting that coordi-
nate as the goal location. A robot is required to traverse



within two meters of their goal location before a new goal
location is selected. This is a simplistic algorithm that results
in the robots following the path of the person, as depicted
in Fig. 4.

Fig. 5. UAV metric for current implementation. Y-axis is the percentage
of the total time of the experiment where the person was in the UAV’s
view-shed.

C. Preliminary Results

Figs. 6 and 5 show metric results we have collected from a
simulation experiment we ran with the current implementa-
tion. In these figures, ph refers to position history, the number
of seconds of previous person position data is used to fit the
person motion model, and th refers to time-horizon, the num-
ber of seconds in the future the motion model is predicting
to generate the goal location. The goal of this experiment
was to evaluate the current implementation with a variety of
parameters. We evaluated the position history parameter with
values of 3, 5, and 10 seconds. We also evaluated the time-
horizon parameter with values of 0 (no motion prediction), 1,
3, and 5 seconds. 12 total configurations were evaluated, and
their metric values averaged over 60 runs per configuration.
A run is considered successful if the UGV reaches navigates
within 1 meter of the person. Looking at Figs. 6 and 5, we
see the results of evaluating the 12 different configurations
do not show a clear trend from modifying each parameter.
This leads us to postulate that the environmental features,
such as characteristic dimension and tortuosity, may have an
impact on the results. Configurations with a position history
of 10 experienced a disproportionately higher amount of
failed runs. Future work could involve testing this in different
environments. Values are only computed with successful
runs, but position history 10 configurations failed to maintain
the person in either the UGV or UAV’s view-shed enough
to localize the person enough to navigate towards them, thus
leading to failed runs.

D. Expected Results

As shown in Fig. 7, both the UGV and UAV should exhibit
distinctly different behavior from each other as well as the
person. We expect to see the UAV take wide turns and
choose goal locations that provide an unobstructed view of
the potential motion of the person. This is compared to the

Fig. 6. UGV metrics for current implementation. Dotted blue line in each
subplot represents the average value of the subplot.

Fig. 7. Anticipated outcome of the proposed approach. The UAV (blue)
takes wider path to ensure viewing of the person’s movement. The UGV
ends up taking a short cut because the motion prediction allowed for a more
optimal location selection.

UGV which we expect to see take the shortest possible path.
This is due to the UGV having knowledge of the persons
position at anytime. In Fig. 7 the UGV starts by directly
following the path of the person, but because the UAV has
positioned itself to have a full view of the person as it rounds
the corner, by sharing this information with the UGV the
UGV is able to produce a more accurate motion prediction.
This allows the UGV to choose a goal location that intercepts
with the person’s path.

V. FUTURE WORK

Our proposed approach and current implementation
demonstrate a multi-robot system capable of following a non-
cooperative agent successfully through a height-restricted
environment. Future directions of this work involve imple-
menting the proposed goal location selection and goal lo-
cation scoring functions, first in simulation, to run extensive
testing against comparable state of the art solutions, then real
life experiments using a mobile ground robot and a UAV
with a moving person as a validation test. Possible future
work could also include expanding the robot team to contain
multiple UAVs and UGVs, scaling the person tracking to
multiple people or agents, and task allocation between robots.
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