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I. INTRODUCTION

Synchronization and swarming are two different types of
self-organization present throughout many natural systems
that have made their way into diverse artificial and robotic
systems. On the one hand, synchronization refers to the self-
organization of agents’ internal states (or phase) over time
and has been found in diverse natural collective systems
like flashing fireflies [1], chorusing frogs [2], and neuronal
cell populations [3], [4]. In these synchronizing systems,
each agent oscillates through some sort of cycle; this might
mean flashing a light, making a sound, or sending an
electrical pulse every few seconds. Each agent processes
information about their neighbors’ internal states and adjusts
the instantaneous rate at which it moves along its cycle so
that it more closely matches the surrounding phases; the
cumulative result of all constituents trying to match each
others’ phases is that the collective synchronizes. Since the
Kuramoto synchronization model was introduced in 1975 [5],
researchers in essentially all fields have used this model
and similar methods to study synchronization behavior [6]
and engineers have used the same principles to design
more robust power grid systems [7], better communication
systems [8], and enable synchronization among groups of
robots [9].

Swarming refers to the opposite; it is the self-organization
of agents throughout space and is found throughout natural
swarms at all length scales ranging from bacteria at the
micron scale [10], to bridge-building ants at the centimeter
scale [11], to flocking birds at larger scales [12]. Many
models have been devised throughout the past few decades
to study how natural, mobile, and distributed multi-agent
systems may cluster, move together as a group, and dis-
perse [13], [14]. Roboticists have used similar principles
to create large groups of robots at the micron and macro
length scales that can reconfigure into general and specific
formations, work together to manipulate objects, and ex-
plore complex environments as mobile distributed sensor
networks [15], [16], [17].

Although synchronization and swarming have indepen-
dently enabled amazing developments in diverse research
fields ranging from fundamental to application-level re-
search, the effects of their mutual dependence remains
largely unexplored. Igoshin et al. [18] and Iwasa et al. [19]
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Fig. 1: Introduction to swarmalators. (a) Phase values are between 0
and 2π and are mapped to a color bar. (b) Agents spatially attract
toward other agents with a similar phase. (c) Agents inherently
oscillate their phase at their natural frequecny ωi and couple to their
neighbor’s phase through the term Ksin(θj − θi). When K > 0,
agents’ phase tend to move towards synchrony (top); when K < 0,
agents’ phases tend to move towards asynchrony (bottom).

took the first steps by introducing a set of models that
demonstrated the emergent behaviors of a population of
mobile agents that moved with respect to each other as a
function of their internal phase and adjusted their internal
state as a function of their motion with respect to each
other. In 2017, O’Keeffe et al. [20] introduced a general-
ized Kuramoto model that officially began the swarmalator
field (short for swarming coupled oscillators), and Ceron et
al. [21] introduced a new swarmalator model whose emergent
behaviors closely mimic the behavior of diverse systems like
spermatozoa, social slime mold, and various microrobotic
swarms.

Studying the emergent behaviors of swarming coupled os-
cillators, or the mutual dependence between synchronization
and swarming, holds enormous potential for researchers in
a variety of fields ranging from biology to physics to engi-
neering and has already begun with diverse studies related
to the model’s emergent behaviors, the effect of various
repulsive interactions, and the effect of confined trajectories
for agents’ motions and interactions [22], [23]. Roboticists
can use the same principles to design mechanisms for
motion in a distributed and heterogeneous robot collective.
Indeed, the first demonstration of the swarmalator model on
robots showed that a group of 10 robots self-organized into
formations like those theoretically predicted [24]. Moving
forward, roboticists can consider the swarmalator model as
an abstract mathematical framework that enables a group of
heterogeneous robots to change the collective shape, motion,
and inter-agent spacing without having to hardwire any
behaviors into each of the robots. Each of the behaviors
results from the dual position-phase pairwise interactions
between coupling agents; this could enable a wide breadth



Fig. 2: (a-e) Collective behaviors of the original swarmalator model.
(a) Synchronized cluster (K = 1, J = 1). (b) Asynchronous cluster
(K = 0, J = −1). (c) Static phase wave (K = 0, J = 1).
(d) Splintered phase wave (K = −0.2, J = 1). (e) Active phase
wave (K = −0.4, J = 1). (f-j) Collective behaviors of the new
swarmalator model. (f) Disorganized partially synchronized cluster
(K = 1, J = 1). (g) Asynchronous cluster with paired agents
(K = 0, J = −1). (h) Static phase wave (K = 0, J = 1). (i)
Active phase wave (K = −0.4, J = 1). (j) Disordered Active
phase wave (K = −1, J = 1).

of collective behaviors useful for robot swarms at the micron
and macro length scales.

The full development of this work in simulation and in
physical demonstrations will represent a major thrust in
the swarming coupled oscillator field. Here, we introduce
a new version of the swarmalator model that is more
closely applicable to real-world robotic systems across a
range of length scales, introduce the interaction between
mobile and immobile coupled oscillators, and explore the
automatic generation of an environment that enables a swarm
to change its morphology, move along a specified trajectory,
and form bridge-like structures between specified locations.
Throughout this short paper we introduce the reader to
the swarmalator field and its possible applications, study
the emergent behaviors of our model in diverse settings,
and experiment with user-specified behaviors that enable a
heterogeneous collective to complete a specific task.

II. THE MODEL

Swarmalators’ motions are dependent on the pairwise
phase interactions with their neighbors and their phase be-
havior is dependent on the relative motions with respect
to each other. Fig. 2a-e details the five major behaviors
introduced in the original swarmalator study [20] and by our
new model (Fig. 2f-j) defined by Eqs. 1-2.

ẋi =
1

N

N∑
j ̸=i

[
A

xj − xi
|xj − xi|

− xj − xi
|xj − xi|2

(
B − J cos

(
θj − θi

))]
(1)

θ̇i = ωi +
K

N

N∑
j ̸=i

sin
(
θj − θi

)
|xj − xi|

(2)

Each agent i follows an equation of motion ẋi that is a
function of its position xi with respect to its neighbor j and
its phase difference with its neighbor, where θi,j ∈ (0, 2π]
and is representative of some internal state; each agent’s
phase is represented by its color and is mapped to the
colorbar in Fig. 1a.

A. Key Model Parameters

The model includes global attraction between all agents
through a unit vector model and is tuned by the coefficient
A, while distance-dependent repulsion is enabled by a power
law model and tuned by the coefficient B. As shown in
Fig. 1b, spatial-phase self-organization is driven by the
coefficient J ∈ [−1, 1], which enables attraction or repulsion
between similar-phase agents. When J > 0, agents attract
towards those with similar phases and when J < 0, agents
attract towards those with a phase difference close to π.
Eq. 2 is a variation of the Kuramoto model which defines
each agent’s phase behavior as a function of the pairwise
phase differences between agents, their relative positions,
and a coupling coefficient K. As shown in Fig. 1c, each
agent’s phase is mapped to a unit circle and it oscillates
its phase at some inherent rate: its natural frequency ωi. K
enables agents to match each other’s phases (move towards
synchrony) when it is positive, or move towards asynchrony
when it is negative.

B. Model Behaviors

Our model is more realistic from a robotics perspective
than previous models. As shown in Eq. 1, spatial phase
interaction is controlled by the power law term. This enables
agents to move towards or away from agents with similar
phases as a function of their separation distance; this is
important when imitating a real system or implementing on a
distributed robotic system because agents will more reliably
transmit information to other agents that are nearer to them.

As shown in Figs. 2f-j, our new model enables agents to
have very small spacing between neighbors which causes
them to form tight circles instead of annulus formations
(Figs. 2h-i). Interestingly, one of the most disorganized-
looking states is when K = 1, J = 1 (Fig. 2f); instead
of forming a compact synchronized cluster, the collective
has a group of agents that attract to each other and form
an irregular shape while a number of agents remain on
the outskirts of the collective. This disorganized behavior
happens because the agents synchronize as a function of
distance, and since they do not spatially attract to each other
equally on the basis of their phase interactions, it is much
more difficult for the agents to move toward other agents
when they have a similar phase but are far away; this in turn
reduces the agents’ ability to work together to synchronize
with other agents that have a large phase difference with
them. When K = 0 and J = −1, the agents attract others
with a large phase difference and form a phase-disorganized
circular cluster similar to the one in Fig. 2j; however, agents
with a large phase difference tend to pair with one another
because of the high attraction that occurs when two agents
are spatially close. Once two agents attract to each other, they
increase the distance from other agents which decreases the
effect of the spatial-phase interaction term in the equation
of motion. This is the same mechanism that enables the
collective to form tight circular formations in Figs. 2h-i. The
agents are all attracted to each other through the unit vector
portion of the equation of motion (this creates the circular



Fig. 3: Emergent behaviors of swarmalators in the presence of
beacons. (a-c) Beacons organized by phase to increase the mobile
agents’ spatial phase order. Number of beacons: (a) 2; (b) 2; (c)
5. K = 0 and J = 1 for (a-c). (d-f) Bridges are formed between
beacons when they are placed along a straight line. Number of
beacons: (d) 2; (e) 4; (f) 100. (g-j) Mobile agents form static
clusters around the beacons; K = 1 and J = 1. Number of
beacons: (g) 2; (h) 3; (i) 4; (j) 10. (k-l) Collective constructs and
deconstructs bridges between neighboring beacons arranged in a
circular configuration; K = 0 and J = 1; sequential time steps
shown correspond to t = 1, t = 25, t = 100, t = 150, t = 200,
t = 900. (k) A = 1, B = 1. (l) A = 2, B = 2.

formation) but high attraction/high repulsion to other agents
with a similar phase/large phase difference when they are
near. The final state, the disordered active phase wave in
Fig. 1m shows how the anti-phase coupling behavior of the
swarmalators allows the agents to spread out more as they
move around the perimeter of the formation. Note that the
inner part of formation remains empty since the cumulative
repulsion of agents with differing phases pushes the agents
to move on the outer edge where there is more space.

III. EMERGENT BEHAVIORS AMONG BEACONS

When we consider many swarm robotics applications, the
motion of agents with respect to each other is only half
of the story; the agents are in some environment that they
might react to and/or influence. If we take into account
the environment and consider it as a network of immobile
coupled oscillators (or beacons), we find that the mobile
agents can be made to move in specific trajectories, construct
bridges between specified points, and then deconstruct them;
all of this is on-demand by changing parameter values in
the swarmalator model so that specific beacons influence
the heterogeneous collective’s behavior. This portion of our
study is especially exciting since no other work in the
coupled oscillators, swarming, or swarmalators field has con-
sidered the interactions between mobile and static coupled
oscillators. Yet, many future robot swarms could benefit from
this general formulation because it allows beacons to split the
group by their heterogeneity and direct the various subgroups
to specific locations through reactive phase interactions.

IV. AGGREGATION AND BRIDGE BUILDING

By setting the global parameters to K = 0 and J = 1
and the phases to a perfect uniform distribution between 0

and 2π, we can enable the collective to form connections,
or ”bridges”, between specified points, as shown in Figs. 3a-
c. In these experiments, the beacons are evenly distributed
along the circumference of a circle with radius equal to 1
and their phases are organized incrementally in the coun-
terclockwise position. This enables the collective to form
a continuous bridge around the perimeter while changing
its overall shape with the distribution of beacons. Note that
when there are a low number of beacons (∼ 2 − 5) the
collective forms its bridge so that it almost intersects with
the beacon’s location; however, at higher beacon numbers
(100), the collective deviates away from the beacons’ lo-
cations because of their cumulative repulsion. When the
collective forms a bridge between two points (Figs. 3a-b),
the distribution of points and distinct number of bridges
changes between 2 and 3. As shown in Figs. 3a-b, there
is always a continuous bridge between the two beacons;
this is because the left and right beacons always have an
offset of π which means that the mobile agents will have to
form at least two bridges between the two points since the
mobile agents have a perfect distribution of phases between
0 and 2π. When there are three bridges, there is always
a continuous line of agents between the two beacons and
a sparse distribution of agents around the perimeter. The
sparsity of the agents along these regions is because only
half of the collective is distributed across the second and
third bridges and the system reaches an equilibrium point
where approximately one quarter of the collective remains
on one side of the connecting bridge and another quarter
on the opposite side. It is important to note that the phase
interactions are essentially attractive and repulsive potential
fields between mobile agents and beacons; therefore, if there
are just a few mobile agents on one side of the connecting
line, which is the case in Fig.3a, the attractive potential field
from the bridge on the other side of the middle connecting
line can slowly pull the mobile agents over.

As shown in Fig. 3a-f, the number of bridges and their
overall organization can be controlled by managing the phase
distributions. Throughout these experiments, we automat-
ically generate the phase values of the beacons and the
mobile agents so that a single bridge is formed between any
number of points. By creating a perfect distribution of phases
between 0 and π, and arranging the phases of the beacons so
they are increasing from left to right, the collective forms a
set of bridges between all beacon locations. We demonstrate
this behavior scales up with increasing numbers of beacons
in Figs. 3d-f.

We demonstrate how this framework can be used to
aggregate clusters at desired locations and form sparser
bridges between beacon locations. This enables the agents to
lose any global attraction (not related to phase interactions)
between mobile agents and any repulsion (not related to
phase interactions) between mobile agents and beacons. This
enables the mobile agents to spread out around the beacon
locations. In these cases the mobile agents and beacons each
have a perfect distribution of phases between 0 and 2π.
Since K = 1 and J = 1, the collective splits into several



subgroups that synchronize within themselves and to each of
the designated beacons; however, if K were further raised,
then eventually the whole collective would synchronize and
aggregate around one of the beacons. Therefore, using a
single global parameter, we can enable a heterogeneous
collective to spatially split into its different subgroups or join
together into one large group. It should be noted that while it
would be beneficial to control the number of beacons across
which the collective distributes itself by simply changing K
to some value between 1 and the point where it globally
synchronizes, the transition from phase group synchroniza-
tion to global synchronization is a swift transition and does
not allow for this middle-case behavior where only part of
the collective synchronizes with some of the phases. There
are several ways to design bridges between certain beacons
or clusters at certain locations. One method is to modulate
the phase or natural frequency values of the beacons so that
part of the collective is attracted to those locations while
another part of the collective is attracted to another set of
locations, and the second is to automatically choose which
beacons are active and have phase interaction with the mobile
agents while controlling the distribution of phases among
the beacons; we choose the latter since varying the natural
frequency can increase the parameter space and can cause
the collective to have oscillatory motions between beacon
locations.

Throughout each of the experiments in Figs. 3, the natural
frequency for all mobile agents and beacons was kept at zero
to simplify the problem. Another variable that we controlled
throughout these experiments was the spatial organization of
phases with respect to the beacons; with the exception of
the randomly placed beacons, the beacons’ phases increased
from left to right (Figs. 3d-f) or in the counterclockwise
direction (Figs. 3a-c and g-l). This enabled the collective to
create organized links between adjacent beacons in Figs. 3a-
f and i-j; however, if the beacons are unorganized, then
links between non-adjacent beacons can be formed by the
mobile agents. For example, if the phases of four beacons
are disorganized (not increasing in the counterclockwise
direction) then the collective is able to form an ’x’ formation
by forming bridges between beacons on opposing sides.
To demonstrate a practical application of these behaviors,
we demonstrate a collective constructing and deconstructing
bridges along a set of beacons arranged in a circular con-
figuration with phases automatically generated as alternating
between 0 and π so the collective can easily form connec-
tions between neighboring beacons (Figs. 3k-l). By tuning
the global parameters of attraction and repulsion between the
agents, we can program the pairwise forces between mobile
agents which in turn affects their neighbor spacing. This
enables the collective to resemble a rod (Fig. 3k) or sparse
group (Fig. 3l) bending from one beacon to the next; this
model translates to three dimensions as well, which opens up
possibilities for its application to heterogeneous collectives
in which some agents move along a plane while other agents
move in 3D.

V. CONCLUSION

While this short paper advances the motion and phase
behavior control of reactive swarming coupled oscillators,
there are several areas for next steps and future work. First,
we must demonstrate the new model’s collective behaviors
on physical hardware. This requires building a large number
of robots that follow the swarmalator model to create the for-
mations and motions we report. We are currently developing
the physical platform that can implement these behaviors
for large groups (> 10) of robots since it is important
to consider the effects of scaling up in a physical robot
collective. Second, we show a set of experimental results
that are consistent across several trials. We plan to develop
formal analyses that prove the collective will always end
up at the same final formation or motion given any initial
configuration of phases and positions; we deem this to be
beyond the scope of this paper and plan to address this in
future work. Finally, we present an equation of motion that
does not consider any specific vehicle’s dynamics or velocity
and sensor limitations. This could be a weakness since
each robotic system may exhibit slightly different collective
behaviors given its constraints, but it could also be a strength
since it means the model is general and could be adapted
to diverse systems in which heterogeneous robot collectives
have different modes of locomotion. Our swarming coupled
oscillators are enabling a novel coordination mechanism
and currently, little is known about the collective behaviors
possible with swarmalators. We must begin with this general
model and explore what behaviors are possible before adding
in any constraints. Even with these limitations, this work
is a big step in the swarmalators field towards enabling
robot swarms that require very little information transfer
compared to the collective behavior complexity. Through this
work, we introduce the robotics community to swarmalators
so that swarm robotics researchers can expand upon this
model to enable more complex collective behaviors with
heterogeneous teams of robots.
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[24] A. Barciś, M. Barciś, and C. Bettstetter, “Robots that sync and swarm:
A proof of concept in ros 2,” in 2019 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS). IEEE, 2019, pp. 98–
104.


