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Abstract— Robot swarms operating in real-world conditions
will experience a variety of faults, essentially making the
swarm heterogeneous over the lifetime of its operations. Our
previous work presented a method to identify metrics which can
discriminate effectively between normal and faulty states of a
robot in the swarm. Here we present our approach to faulty
state discrimination through the lens of measuring diversity:
can diversity be evaluated through discrimination of states of
a system, and can we identify discriminatory metrics to apply
to real-time diversity evaluation?

I. INTRODUCTION

Homogeneity is often considered to be a defining charac-
teristic in the swarm paradigm [1]. In simulation, physical
homogeneity can be imposed on the system. In a real-
world setting however, heterogeneity arises naturally from
mechanical differences in the sensors and actuators of the
robots. In particular, faults will inevitably occur over the
course of system run-time limiting the capabilities of certain
individuals and giving rise to a level of heterogeneity.

We thus see a parallel between the discourse in hetero-
geneous multi-robot research and faulty swarm systems. In
particular, metrics of diversity could be useful in evaluating
failure in multi-robot/swarm systems, and vice-versa. From
the lens of safety, we have been interested in detecting faults
in swarm robot systems. There are many approaches to fault
detection and diagnosis, and it is widely studied in other
domains under labels of execution monitoring or anomaly
detection [2].

The common features in these approaches are the identi-
fication, separation and characterization of distinct states of
the system. We focus on separation and characterization of
two states of a robot swarm: a “normal”, faultless state of
operation, and a faulty state of operation. In swarm robotics,
there are additional dimensions to the fault detection problem
arising from two properties of the swarm:

1) The swarm is decentralized: individuals act based on
local knowledge of their environment.

2) Local interactions of individuals give rise to emergent
behaviours which can be difficult to predict and model.

Together these two properties motivate a decentralized,
data-driven method of fault detection where individual robots
self-detect faults based on measures of their local envi-
ronment – either in the range of sensing or on-board. We
summarize results for this method which have been reported

in previous work published in [3], demonstrating a method
for the automatic extraction of measures, or metrics, with
high discriminatory power between states.

Finally, we discuss how the same method may be useful
to measure diversity in a heterogeneous system - can metrics
based on local sensing discriminate between a range of given
states and can we build a model for the real-time evaluation
of diversity in the system?

II. RELATED WORK

We have discussed two states of the swarm, normal versus
faulty, but this is a gross simplification of the possible states
of fault. Firstly, faults can be differentiated into categories
based on fault type. Secondly, a fault can exist on a gradient -
robots moving at a fraction of maximum speed for example.
The “bipolar” classification of state as either homogeneous
or heterogeneous has been challenged in previous work
which presents a quantitative metric of diversity: hierarchic
social entropy [4]. This is one of many diversity metrics,
or indices, which have applications beyond multi-agent
robotics: previous work has evaluated a range of the most
relevant diversity indices across domains together with their
information-theoretic counterparts, with considerations for
the impact of sample size [5]. These are metrics evaluated
at the global level of the system.

In the work we present, we demonstrate a method for
extracting discriminatory metrics at the local level, in an
intra-logistics use-case scenario, which may be used in
combination to detect a variety of fault types in a swarm
[3]. Faults can be classified as topology or component related
[6]. A communication link fault is an example of the former;
sensor and actuator faults examples of the latter. We can
classify metrics in the same way: for example, component
metrics could capture sensor data and topology metrics could
capture the distance between robots. We propose an auto-
matic method for metric extraction which could be applied
more broadly to different scenarios, looking at both topology
and component metrics in a univariate analysis.

III. METHOD

A. Scenario

Swarms have the potential to be used out-of-the-box for
intralogistics in areas that have not yet adopted robotics,
such as SMEs, or in messy real-world environments [7].



In our use-case scenario, the robots operate in a 5m x 5m
bounded arena, referred to as the warehouse: the task is to
retrieve and deliver boxes to the drop-off zone, a 25cm-wide
vertical strip extending along the length of the right-hand
wall. Additionally, the boxes are raised up on tables which
the robots can detect and navigate under in order to lift.
Robots move stochastically and are able to detect objects
(robot, box or wall) via ArUco tags. Following previous
work in our team, the parameters of the scenario have been
selected to match as closely as possible the robot platform
and the arena we have available, our aim being to close the
reality gap with real-world tests [8], [9]. Table I and figure
1 summarize the configuration.

TABLE I: Configuration

Property Value
Warehouse Dimensions 500 cm x 500 cm

Number of boxes 10
Number of robots 10
Box diameter 25 cm

Robot Diameter 25 cm
Cameras 4 x 120 FOV video cameras

equidistant on perimeter,
1 x 120 FOV video camera
upward-facing to detect boxes

Camera range 50 cm
Robot max speed 200 cm/s (real-time)
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Fig. 1: Warehouse setup: boxes are represented by blue
squares, robots by circles. A green pointer shows the current
heading. The drop-off zone is marked by a dashed vertical
line on the right side of the arena.

B. Simulation environment

We run experiments in a 2D physics-based simulator
written in python1. The main considerations in developing
the simulation test environment include:

• Robot motion: the robots move stochastically and
choose a new heading at random at a rate of once per
0.2 seconds.

• Initialization: boxes and robots are placed at random in
the arena.

1https://bitbucket.org/suet lee/metric extraction ddmefd/src/master/

• Table box carrier: we abstract the table carriers so that
robots only interact with a “box”.

• Robot sensors: we abstract sensing capabilities and
assume a 50 centimeter camera range given the size
of the arena. The camera is assumed to perform both
object detection and avoidance.

C. Metric Selection
We have already introduced two motivations in selecting

for metrics: capturing information about the local environ-
ment of an individual, and self-detection of faults. We are
most interested in metrics related to external factors in the
environment, which would exploit the “swarmy” and com-
plex nature of the system, rather than focusing on mechanical
components or the state of software of an individual. These
properties have been covered by single-robot fault detection
and diagnosis studies and we assume they can be checked
at runtime by an on-board internal checker. Instead we look
at properties of the environment and the robot, which may
affect, or be affected, by individual behaviour and also the
wider system.

The metrics selected were informed by the literature in
swarm behaviours [10] and were selected systematically in
two steps: first we considered the topology of the swarm
from a robot’s local perspective, second we considered
all possible measurements available from the sensors and
actuators specific to our robot platform. The full list is as
follows:

1) Robots in range
2) Boxes in range
3) Walls in range
4) Combined in range
5) Velocity
6) Robot delivery count
7) Robot state
8) Nearest robot distance
9) Nearest box distance

10) Nearest wall distance
11) Nearest combined

distance
12) ROC of nearest robot

ID (rate of change)
13) ROC of nearest box ID
14) ROC of nearest wall ID
15) ROC of nearest com-

bined ID

D. Faulty States
Potential faults were reasoned about systematically by

considering our use-case scenario and by reference to faults
covered in the body of related work. We consider the
following faults:
F1: 0% max speed
F2: 10% max speed
F3: 50% max speed
F4: Can’t lift boxes
F5: Can’t deposit boxes
F6: 0% camera range

We test discrimination of each fault type independently
against the “normal” state. In practice, we have the following
configuration for each trial:

• Select a fault type: Fi ∈ {F1, ..., F6}
• Select the number of faulty robots: 0, ..., n
Faults are assumed to be consistently present for the

duration of a trial. Then for any given trial, we have a



population of robots belonging to either the faulty state Fi

or the normal state. In particular, the fault types we consider
also have a level of granularity: F1, F2, F3 are related to the
speed of the robot, reduced at different levels.

E. Statistical Analysis

As we are interested in discriminating between two states,
we take the approach of generating dataset samples for each
state and evaluating the group difference between datasets
with a suitable statistical test. The datasets are generated for
each of the metrics in section III-C, with a sample size of
100. We use the Mann-Whitney U (MWU) test as it makes
no assumption of an underlying distribution in the data. We
ensure samples are independent and identically distributed
to meet the criteria of the test. Further, we can evaluate the
common language effect size which takes into account sample
size [11], [12].

In sum, we derive a measure E which we apply to the
normal and faulty datasets for a single metric. E is dependent
on the MWU test statistic U and takes into account sample
sizes n1, n2 for the datasets under comparison:

E = 2

∣∣∣∣ U

n1n2
− 0.5

∣∣∣∣ (1)

We call E a measure of disciminatory power with values
in the range of [0, 1], where 0 indicates no power and 1
indicates high discriminatory power.

IV. RESULTS
The matrix of results is shown in figure 2. At a glance,

there is some correspondence between fault types and metric
types with largest effect size: this could be seen as a kind of
“signature” for fault type.

• Speed related faults are discriminated by velocity,
metrics related to proximity to walls and other robots,
and robot delivery count. We reason that slower robots
collect fewer boxes, thus having lower delivery count,
and reduced speed is reliably detected on-board a robot.

• Lifter faults are discriminated by robot delivery count
and robot state. Issues with the lifter impacts a robot’s
ability to retrieve and deliver boxes. Topological metrics
have low discriminatory power however.

• Camera faults are discriminated by metrics related to
wall proximity.

V. A SIMPLE THRESHOLD MODEL

We propose a simple threshold model to demonstrate how
the extracted metrics are useful to differentiate between nor-
mal and faulty. For a particular fault, we select metrics with
the highest discriminatory power. For each metric, we will
need a threshold to determine whether a data sample deviates
from normal. Our model then uses a linear combination of
thresholds to evaluate whether a robot is in a faulty state or
not. We build a model to detect a single fault type in the
following steps:

1) Discard any metric where E < s and s is a cut-off value
to be specified.

2) Take n metrics with the highest discriminatory power
E.

3) Find a threshold τ for each metric: take the mean of
the faulty and normal datasets for this metric, µF and
µN respectively. We set τ = (µF + µN )/2.

4) We also note which side of the threshold normal and
faulty lie: if µF < τ , then a random sample x is
considered faulty if x < τ and normal if x >= τ .
For µF ≥ τ , x is considered faulty if x >= τ .

5) Specify a number of thresholds, k, to be passed for a
robot to be declared as faulty.

We apply these steps to build a model for each selected
fault: we select the best combination of parameters n, k and s
for performance. The faults selected for analysis are F1: 0%
max speed, F4: Can’t lift boxes, and F6: 0% camera range.
We do not focus on faults F2 and F5 as they belong to the
same fault types as F1 and F4 respectively. Table II lists the
selected parameters, including metrics, for the models.

TABLE II: Selected model parameters

n k s Metrics selected
F1 5 4 0.15 Velocity

Robot delivery count
Nearest combined distance
ROC Nearest wall ID

F4 3 2 0.15 Robot delivery count
Robot state

F6 5 3 0.15 Combined in range
Nearest wall distance
Nearest combined distance

TABLE III: Mean measures

F1 F4 F6

Mean A 0.96 0.90 0.97
Mean SE 1.0 1.0 1.0
Mean SP 0.92 0.84 0.94

We test the models varying the proportion of faulty robots
with 10 repetitions. The model under test is applied to
each robot in the scenario and metric values are taken as
an average over 50 samples (taken in a 1 second time
interval). Finally, we compute an accuracy score A at each
simulation timestep and additionally, we compute specificity
and sensitivity scores: SP and SE.

Table III shows that the models perform well overall with
mean accuracy scores greater or equal to 0.9 and maximum
sensitivity scores at 1.0 (to 2 d.p.). However, mean specificity
scores are slightly lower, in the range of 0.84 to 0.94,
which means we detect false positives. We have shown that
through a data-driven analysis we are able to find metrics
where faulty and normal data distributions have large group
difference, which allows for a single value threshold to be
found easily.

VI. DISCUSSION

We have demonstrated metric extraction to discriminate
between faulty and normal states. However, the metrics
selected for analysis in section III-C should generalize to
other states beyond failure modes, and in particular, they
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Fig. 2: Discriminatory power (DP) matrix for faults vs. metrics: we evaluate the DP for each metric across all fault types.
Effect size values sit in the range [0, 1] with 1 corresponding to the largest effect size. We can see a metric “signature”
emerging where a correspondence between fault type and the highest DP metrics may be identified [3].

have potential for diversity extraction. Essentially, the met-
rics capture information about the local environment of an
individual in the swarm.

In order to extend our method to a measure of diversity in
a heterogeneous swarm, we would have to know the physical
or behavioural characteristics of each subgroup. Given a
characterization of each subgroup, we can proceed with the
same method - instead of trials across fault types, we can
run trials for pairwise comparison of subgroups. Whilst we
have designated a default state of “normal” in the context of
fault detection, we recognize there may not be an analogous
default subgroup in a heterogeneous system. Our method
is predominately applicable for comparison between two
main groups (or states), one of which may be divided into
subgroups (in our case fault types). Otherwise, the number
of pairwise comparisons between subgroups could increase
significantly.

Further questions for exploration include:

• How does this approach compare to clustering methods,
principal component analysis and other multivariate
methods?

• Can we reduce the sample size and still produce good
results?

• Univariate analysis lends itself to a human-
understandable interpretation of metric/fault correlation:
is this useful in the context of measuring diversity?

Finally, we have demonstrated the power of our univariate
analysis in detecting transitions between two states of a
system in real-time with a relatively small sample size. In
particular, the ability for real-time discrimination of states
may be useful when heterogeneity arises as a dynamic
element, with changes in agents arising over time. In future,
we would like to test the method on a real-world swarm
where collecting a large sample of data may be difficult due
to experimental constraints.
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