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Abstract—We propose a vision-and-language benchmark for
cooperative and heterogeneous multi-agent learning. We intro-
duce a benchmark multimodal dataset with tasks involving
collaboration between multiple heterogeneous agents in a rich
multiroom home environment. We provide an integrated learning
framework, multimodal implementation of the state-of-the-art,
and consistent evaluation protocol. Our experiments investigate
the impact of different modalities on the learning performance.
We also introduce a simple message passing method between
agents. The results suggest that multi-modality introduces unique
challenges for cooperative multi-agent learning and there is
significant room for advancing MARL methods in such settings.

I. INTRODUCTION

We posit that progress in multi-agent learning could be
sped up with the introduction of standard, sophisticated en-
vironments for training and evaluation. Prior work on coop-
erative multi-agent learning has focused on simplified envi-
ronments [12]. Visually rich environments that support multi-
agent, cooperative tasks have not been explored until very
recently [17} [7) 16 14} [16]. We propose the first multimodal
benchmark - Cooperative Heterogeneous Multi-Agent Rein-
forcement Learning (CHMARL) - wherein two agents must
collaboratively find an object and place it at a target location.

CHMARL is built using visually rich scenes from Virtual-
Home [14], and includes language. We implement a language
generator that procedurally provides feedback to guide embod-
ied agents to achieve tasks. In addition to providing a novel
large-scale vision and language dataset for collaborative task
completion in simulated household environments, we conduct
a comprehensive evaluation of several state of the art MARL
algorithms under various setting for our benchmark task. We
investigate and analyze the impact of various aspects of the
collaborative MARL algorithms, including heterogeneity and
multi-modality. We also propose and implement a message
passing interface between agents to enable effective informa-
tion sharing, especially in decentralized model setups where
they would otherwise not have the ability to collaborate with
each other. The results reveal interesting insights: 1) The
multimodal (vision and language) setting presents an extra
challenge for existing techniques; 2) Vision and language
grounding helps the learning process; and 3) Even simple
multi-agent communication protocols substantially improve
task performance by allowing effective collaboration. We
expect this work to contribute towards a standard multi-modal
testbed for MARL and foster research in this direction.
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II. RELATED WORK

Collaborative multi-agent RL is well-studied problem. For
brevity we only mention the most relevant work here.
Kurenkov et al [9] consider the object finding problem, where
the target object is described using natural language. However,
their focus is to exploit semantic priors about object place-
ments (e.g. cheese is likely to be found in a fridge, which in
turn is likely to be in the kitchen). In our setup, objects are not
placed according to semantic priors, since our focus is multi-
agent collaboration to search for and move objects efficiently.
Jain et al ([6], [7]) and Nachum et al [13] propose a setting
where the agents must perform certain actions synchronously,
e.g., for lifting a heavy object. This is different from our
setting, which doesn’t require synchronous actions; rather, the
agents need to communicate with each other to explore the
environment efficiently. These prior works assume homoge-
neous agents, whereas we consider heterogeneous agents. Zhu
et al [18]] study object finding an object in a multi-agent setup,
but unlike us, their setting does not involve interactions with
the environment, and the agents are homogeneous. Liu et
al among others ([L1l], [10], [3], [4])) consider the problem
of collaborative perception, where there are some degraded
agents, and the goal is to learn an efficient communication
strategy to improve the observation of the degraded agents.
Unlike our setting, their agents are fixed and there is no
interaction (navigation or manipulation) with the environment.

III. PROPOSED BENCHMARK
A. Problem Setting

Our setting consists of two embodied agents with different
capabilities situated in a home environment. The agents need
to cooperate to efficiently complete a task described in natural
language. The first agent is a humanoid, while the second
agent is a drone. The humanoid agent (H) has an egocentric
field of view, and can physically interact with objects in the
environment, while the drone agent (D) has a top-down view
of a part of the environment, but cannot physically interact
with objects. Given a task described in natural language, such
as “Put a glass on the desk”, the goal is to complete it in as
few steps as possible. In order to complete the task, the agents
need to find the objects of interest (i.e. glass and desk), and
the ground agent needs to perform pick-and-place operations
to accomplish the desired configuration. Effective inter-agent



TABLE I: Drone and ground agent view examples from the
dataset. The message vector encodes which room the object of
interest or the target receptacle is in, once either agent finds it. The
state value encodes progress in the task (higher is better). In the first
row, the language instruction is “Pick up the whipped cream”, the
corresponding message is [0, 1,0, 0], and the state value ¢(s) = 2.
In the second row the instruction is ‘“Place it on the bed”, the
corresponding message is [0, 0, 0, 1], with state value ¢(s) = 6.

Ground agent view

Drone view

cooperation is required for efficiency; the drone with its larger
field of view can explore the environment more effectively,
while only the ground agent can interact with objects.

Environment We use VirtualHome [14], a Unity-based en-
vironment designed for embodied multi-agent collaborative
tasks. VirtualHome consists of 7 different scenes; each scene
contains multiple rooms. The environment allows initializing
objects at different locations in the scene, which can be used
to generate various configurations of object placements. The
drone is simulated by an overhead camera attached to an
invisible agent in VirtualHome. Examples of observations from
the ground and drone agent are shown in Tablem

Tasks Tasks in the environment involve placing a graspable
object on a receptacle object. There are 45 graspable objects
and 16 receptacle objects. For each task, a graspable object,
initial receptacle object, and target receptacle object are ran-
domly sampled. The graspable object is initialized at the initial
receptacle object, and the goal is to move it to the target
receptacle object. The task is described using natural language,
such as “Put the (graspable object) on the (receptacle object).”
State space VirtualHome provides both scene graph and visual
representations. Hence, our benchmark consists of both — the
scene graph representation that circumvents the object recog-
nition problem (allows focus on multi-agent cooperation), with
lower compute requirements, while the visual representation
requires object recognition in addition to developing the multi-
agent cooperation algorithms, and is closer to the real world.
Each agent receives a local observation at every time step
(humanoid: egocentric view of the environment and drone:
top-down view of a part of the environment, depending on its
current location). In the visual setting, the observations consist
of RGB frames for each agent. In the scene graph setting,

the observation consists of a graph where the nodes are all
the objects present in the visual observation of the agent, and
edges describe the relationships between them. For example a
coffee mug placed on the dining table will be represented in
the scene graph by the nodes “coffee mug” and “table” and
the edge between them for the relationship “on”.

Action space To make the setting amenable to reinforcement
learning, the action space consists of high-level navigation and
manipulation actions, as well as low-level navigation actions.

o High-level navigation actions: These are of the form
Goto [ROOM], where ROOM is one of the rooms in
the scene (i.e. kitchen, bedroom, bathroom, livingroom).
These actions are available to both the agents.

o High-level manipulation actions: Only available to the
humanoid agent, and consist of Pick and Place oper-
ations. To keep the action space small, we do not require
specifying the argument for these actions. Instead, if the
agent executes the Pick action when the graspable object
of interest is in its view, or the Place action when the
receptacle object of interest is in its view (and the agent is
holding the graspable object), the actions lead to picking
up the target graspable object, and placing the object on
the target receptacle object, respectively. Otherwise, the
action fails, and results in no change to the environment.

o Low-level navigation actions: For the humanoid agent,
these actions are Move Forward, Turn Left, and
Turn Right, while for the drone agent, these actions
are Move Forward, Move Backward, Move Left,
and Move Right.

o The Stay action: Both agents also have a Stay action,
which doesn’t result in any movement of the agent or
interaction with the environment.

Reward The reward for taking action a at state s is defined
in terms of a potential function, R(s,a,s’) = ¢(s') — ¢(s),
where the potential function ¢(-) is defined as follows:

10, if X placed on Y

if X grasped, and Y visible to G

if X grasped, and Y visible to D

if X grasped, and Y not visible to either G or D

if X not grasped, and X visible to G

if X not grasped, and X visible to D

, if X not grasped, and X not visible to either G or D

<

=

B

&

I
SR N A GTS

where X is the object of interest, and Y is the target location.

Language Feedback In addition to the reward, the agents
might receive natural language feedback from the environment
when they perform a suboptimal action. For instance, if the
target object is visible to the ground agent, and it does not
pick it, the feedback may be “You should have picked up the
glass instead of going to the livingroom.”

B. Implementation Details

Trajectory Generation using Planner To create a dataset
for offline training, we implement a planner, that given a
task, finds a trajectory to complete the task, using privileged



information. For instance, if the object of interest is visible
to the drone, the ground agent is directed to the location of
the object. Using the planner, we generate 6,100 trajectories,
which we divide into training, validation, and test splits
(subsection III-C).

Language Data We generate 100 task descriptions using a
single template, and 100 feedback language instructions using
2 templates. We use Amazon Mechanical Turk to obtain 1
paraphrase for each description and feedback item, from which
we generate additional templates and extract synonyms for ob-
jects. The resulting natural language descriptions and feedback
have 183 unique words, and a mean sentence length of 14.04
words. See for example task descriptions/feedback.

TABLE II: Task descriptions (top) and feedback (bottom).

Grab the washing scrub and keep it on the kitchencounter

Place the wine bottle on top of the work table

Take the lotion and keep it on top of the towel rack

You should have placed the notes on the kitchentable rather than

going to the bedroom

2. You didn’t have to go to the livingroom, you should have placed
the sportsball on the kitchen counter instead

3. You had to place the boardgame on the bed instead of moving

forward

N =

C. Evaluation Protocol

Splits The VirtualHome environment has 7 scenes. The po-
sitions of objects can be modified to create different config-
urations. We create 6000 tasks across scenes 1-5, which are
split into 5,500 training, 250 validation-seen and 250 test-seen
tasks. 50 tasks are created for scenes 6 and 7 each, which are
used as validation-unseen and test-unseen respectively.
Evaluation Metrics We compare approaches based on two
evaluation metrics — the success rate of completing tasks,
and the episode length for successful completion. These two
metrics can be used to compute the path-length-weighted
(PLW) score [1] ps = sL*/max(L,L*) , where s is 1 if the
task was successfully completed, and O otherwise, L is the
number of step taken by the approach to complete the task,
and L* is the optimal number of steps to complete the task,
which is estimated as the number of steps in the trajectory
generated by the planner (subsection III-B). The final score of
the algorithm is computed as the average path-length-weighted
score across all tasks in the test-unseen split.

Input settings We experiment with 2 variants — scene graph
representation and visual representation (subsection III-A)), and
present results for both the settings (section IV).

IV. EXPERIMENTS

We benchmark several approaches on our proposed problem
setting, including behavior cloning and several state-of-the-art
multi-agent RL algorithms. Our model architectures are shown

in
A. Feature Extractors

Visual Observation. The input image is passed through a pre-
trained ResNet-18 network ([5]), and the feature vector from
the pre-final layer is further projected to a 512-dimensional
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Fig. 1: Models: centralized (top) and decentralized(bottom).

vector using a linear layer, which is used as the visual
representation of the scene.

Scene Graph Observation. The object class (e.g. bed, table,
etc.) and the state (e.g. open, closed, etc.) of each node in
the input scene graph is first encoded into vectors using an
object class embedding layer and a state embedding layer
respectively. These vectors are concatenated to obtain a vector
representation for each node. We then apply a Graph Convolu-
tion Layer ([8]) to obtain contextualized embeddings for each
node, which are aggregated using a mean-pooling operation to
obtain the final vector representation of the input scene graph.
Message Passing A key component of a cooperative multi
agent setup is for agents to communicate effectively. We
propose a message passing method which allows agents to
share information with each other. A message is a shared state
between the two agents. It is a binary vector of length equal
to the number of rooms. Each bit of the vector corresponding
to the respective room is set to 1 if either of the agents
identify the object of interest to be in that room. We use two
such messages, one each for the object of interest and the
target receptacle. The messages are used exclusively in the
decentralized setups to allow agents to share information.

B. Algorithms

Behavior Cloning We use the (state, action) pairs in the
dataset to train policy networks using super-
vised learning, for both centralized and decentralized scenar-
i0s. The decentralized scenario uses message passing between
agents. For each scenario, we experiment with both visual
and scene graph representations, where the states are encoded

using the feature extractor architectures (subsection IV-Al), and

the networks are trained end-to-end using an Adam optimizer.



TABLE III: Comparison of algorithms with visual observ
passing interface

ation. (Ours) here refers to the algorithms with our message

Success rate PLW score
Algorithm Validation Test Validation Test
Seen Unseen Seen Unseen Seen Unseen Seen Unseen
BC; decentralized 3721 £2.40 536 £ 1.50 42.02 &= 1.16 3.00 £ 1.00 | 30.34 + 2.02 4.84 + 0.78 35.43 + 1.99 2.09 £ 0.81
BC; decentralized(ours) | 40.89 £ 2.64 6.52 + 1.81 48.54 + 1.66 5.02 £ 0.82|37.42 = 2.51 5.51 £ 0.82 40.11 &+ 2.14 3.50 + 1.31
BC; centralized 30.80 £+ 2.00 4.35 £ 0.61 3492 +296 4.00 £+ 0.73|23.07 + 2.55 4.19 + 0.73 27.37 £+ 3.06 2.29 4+ 0.74
IQL 4.05 +5.02 2.01 = 1.00 842 + 888 233 +3.21| 2.68 +£2.88 1.79 £0.71 631 £691 1.73 &+ 2.58
IQL(ours) 20.89 £+ 2.01 7.56 + 0.48 22.08 4+ 4.02 10.92 4+ 2.11| 13.80 £ 2.55 5.54 + 1.12 19.05 + 2.55 6.10 + 1.81
VDN 0.83 £ 0.41 0.67 =058 294 326 0.00 & 0.00| 0.60 + 0.58 0.51 & 0.47 2.37 &= 3.03 0.00 & 0.00
VDN(ours) 14.18 &£ 1.72 2.55 £ 0.40 16.56 +2.08 5.21 £+ 0.88|10.32 + 1.14 3.76 + 0.65 12.22 + 1.02 3.00 £ 0.28
QMIX 17.73 £ 2.12 3.68 + 0.56 17.96 + 458 2.33 + 2.31|14.09 = 0.71 3.39 + 1.06 1521 + 291 1.88 + 2.29
QMIX(ours) 22.26 = 2.12 8.01 £ 0.56 23.85 + 4.58 12.03 £ 2.31|15.55 & 2.71 6.34 £ 1.06 19.36 £ 2.91 6.45 + 2.29
QTRAN 126 £0.73 2.01 £0.99 2.52 +£222 033 £0.58| 1.09 091 145+ 127 245+ 192 0.33 +0.44
QTRAN(ours) 13.69 4+ 1.22 7.07 £ 0.60 19.58 £+ 1.66 8.00 &= 0.72| 9.73 4+ 0.89 5.94 £ 0.61 15.30 £+ 1.25 4.82 £ 0.55

TABLE IV: Comparison of algorithms with scene graph observation. (Ours) here refers to the algorithms with our message

passing interface

Success rate PLW score
Algorithm Validation Test Validation Test
Seen Unseen Seen Unseen Seen Unseen Seen Unseen
BC; decentralized 41.87 +3.94 1147 +£2.66 47.19 £ 0.55 13.67 +3.21 (3593 £2.95 951 + 1.80 41.78 £+ 1.33 11.36 £ 3.08
BC; decentralized(ours) | 46.25 + 3.94 21.08 £+ 2.66 53.55 + 0.55 18.04 £+ 3.21|38.17 & 2.95 15.06 & 1.80 45.35 + 1.33 13.72 + 3.08
BC; centralized 40.08 4+ 3.81 15.15 & 1.13 33.61 =296 10.01 4+ 1.9332.73 £+ 3.60 11.89 + 0.39 26.77 & 16.95 7.18 £ 3.11
1QL 14.18 = 5.18 14.49 £ 2.59 14.53 £ 5.33 13.67 &= 5.13| 991 &+ 445 10.01 & 1.91 10.80 & 4.22 10.78 + 3.12
IQL(ours) 24.16 £+ 3.18 23.46 £ 2.59 24.89 + 433 21.26 £ 4.13|19.94 + 245 19.21 =191 19.73 + 322 17.05 £ 3.12
VDN 16.85 + 1.89 17.74 £ 3.61 19.03 £+ 2.08 14.67 +4.73 | 11.36 + 2.06 13.76 + 2.37 13.68 + 1.54 11.52 + 2.87
VDN(ours) 34.87 £ 1.89 26.04 + 3.61 36.70 &+ 2.08 27.51 & 3.73|23.37 & 2.06 18.24 £ 2.37 27.86 £ 1.54 17.16 & 2.87
QMIX 20.37 £ 290 14.78 £ 1.67 2348 + 2.23 18.67 £ 4.51 | 13.73 & 3.56 12.84 + 0.58 16.71 4+ 3.50 14.67 + 5.98
QMIX(ours) 39.25 +£2.90 27.85 + 1.67 38.13 4+ 2.23 28.95 + 3.51|25.36 4 3.56 21.44 £+ 0.58 28.68 £ 3.50 20.05 + 5.98
QTRAN 3.04 £527 269 +3.83 294 4+403 3.00+£520| 257 +446 264 +£374 257+ 413 267 +4.63
QTRAN(ours) 1242 +£2.27 10.07 £+ 3.83 11.45 + 3.03 10.05 £ 2.20|10.57 346 6.34 £3.74 9.12 £4.13 742 + 1.63

Decentralized RL Algorithms Next, we benchmark several
state-of-the-art decentralized RL algorithms, described below.
IQL: Independent Q-learning trains the Q-function of each
agent on its history of local observations.

VDN: Value Decomposition Network decomposes the joint Q-
function into a sum of Q-functions of the individual agents,
and trains each agent on its own Q-function using DQN loss.
QMIX: extends VDN by relaxing the decomposition of the
joint Q-function to be any monotonic function of the individual
Q-functions, and trains as in VDN.

QTRAN: extends both VDN and QMIX by transforming the
joint Q-function into an alternate that is expected to be easier
to factorize. We base our implementation on [15], 2] and

extend it for explicit message-passing (subsection IV-A).
C. Results
Our results (Table TII] and [Table TV)) show that:

o The message passing-based decentralized models (la-
belled (ours)) are significantly better than their non
message-passing based versions. Decentralized behavior-
cloning performs best in seen environments in PLW
score, both in the visual and scene-graph representations.
Both highlight the importance of effective communication
Each of the RL models perform better on unseen test and
val environments (best PLW 20.05) compared to behavior
cloning methods (best PLW 13.72), demonstrating their
ability to generalize to newer and unseen environments

o The visual observation (best test-unseen PLW score: 6.45)
is significantly harder than scene graph observation (best
test-unseen PLW score: 20.05). A potential reason for this
could be the need for better representing visual features
using a feature extractor trained on in-domain data.

All the existing algorithms achieve a relatively low PLW
score on the unseen splits, suggesting CHMARL could
spur creation of new algorithms/models.

V. CONCLUSIONS

We proposed CHMARL, a new multimodal, multiagent,
cooperative learning benchmark, with heterogeneous agents
— a ground agent with an egocentric field of view that can
interact with objects in the environment, and a drone agent
with a larger field of view that cannot physically interact
with the environment. We create tasks that require effective
collaboration between agents. We introduce a simple message
passing-based communication interface to allow efficient col-
laboration between agents, leading to significant performance
gains over the non communicative baselines, highlighting the
need for better communication between the agents to improve
task success. We benchmark existing algorithms on the pro-
posed problem; there is significant room for improvement in a
multimodal setup to solve tasks effectively by developing new
algorithms that leverage the strengths of each agent, and learn
an efficient cooperative policy.
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